
Summary Aspects of root architecture, including topology,
link length, diameter and scaling relations, were analyzed in
excavated coarse root systems of three field-grown fruit tree
species (Strychnos cocculoides Bak., Strychnos spinosa Lam.
and Vangueria infausta Burch) and the fruit-bearing shrub
Grewia flava DC. We investigated the root systems using
semi-automatic digitizing and computer-based 3-D recon-
struction techniques. Topological analysis was carried out to
investigate branching patterns as basic determinants of root ar-
chitecture. New topological indices were developed and re-
vealed significant differences among the species. The different
architectural strategies can be explained in terms of cost–bene-
fit relations and efficiency in soil resource exploration and ex-
ploitation. In addition, some well-known hypotheses about ge-
ometry and scaling, most of them previously unverified by
empirical observations on root systems, were tested. For prac-
tical applications, the main emphasis is on the relationship be-
tween proximal root diameter, an easily determined parameter,
and several parameters describing the size of the whole root
system. We also tested the “pipe stem” theory, essentially dat-
ing back to Leonardo da Vinci, which underlies many models
and which we found conformed to our measurement data with
reasonable accuracy. A physiological consequence of the
“constant cross-sectional area rule” may be a certain homoge-
neity of hydraulic architecture throughout root systems.

Keywords: architecture, branching pattern, cross-section
area, Grewia flava, root diameter, root length, Strychnos
cocculoides, Strychnos spinosa, Vangueria infausta.

Introduction

Investigation of tree roots is laborious and time consuming.
Root systems of trees have, therefore, been much less fre-
quently studied than aerial parts. In this paper, information
about topology and geometrical scaling in coarse roots of fruit
tree species native to southern Africa are presented. Root sys-
tems of the fruit trees Strychnos cocculoides Bak., Strychnos
spinosa Lam. and Vangueria infausta Burch., as well as one
shrubby species, Grewia flava DC., were investigated. Beside

gathering information about these rarely investigated plants,
we wanted to develop new techniques of root structural recon-
struction and analysis. We also evaluated some well-known
hypotheses about topology and scaling that might be of gen-
eral interest in root system research, but are seldom tested em-
pirically. We place this study in the context of functional and
structural modeling of plants (Sievänen et al. 1997, Cruiziat
1998), topological analysis (Fitter et al. 1991, Berntson 1997)
and the assessment of strategies for soil exploration and ex-
ploitation (Gandar and Hughes 1988, Hughes et al. 1995).

Topology

Topological properties of root systems have received consid-
erable attention in the literature (Fitter 1985, 1986, 1987, Fit-
ter and Stickland 1991, Spek and van Noordwijk 1994, Bert et
al. 1998). They are believed to influence the efficiency and
costs of resource exploitation in terms of carbon required for
root segment construction (Fitter 1986, Fitter et al. 1991). One
of the main goals of topological analysis is to find out whether
habitat conditions lead to evolutionary adaptations in branch-
ing behavior and rooting strategy.

Various theoretical approaches to evaluating topology have
been developed (Fitter 1985, 1986, van Noordwijk et al. 1994,
Berntson 1997) and have been compared on theoretical
grounds (Berntson 1995), but practical applications have, in
most cases, been restricted to herbaceous plants (Fitter 1986,
Fitter and Stickland 1991). Furthermore, some of the topologi-
cal indices developed to compare root systems of different
sizes show either an unstable oscillating behavior in random
simulations (Berntson 1995) or are based on randomness as-
sumptions that were originally developed for planar networks
(see Werner and Smart 1973) and are inadequate for 3-D
branching systems (Fitter 1986).

One of the most often cited topological distinctions is that
between “dichotomous” and “herringbone” branching pat-
terns (Fitter 1986, 1987, Fitter et al. 1991, van Noordwijk et al.
1994, Lynch 1995, Berntson 1997). We introduce two new in-
dices to quantify branching patterns in the continuum between
these extremes, and apply them to reveal species-specific
characteristics of the root systems we investigated. This ap-
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proach is complemented by the analysis of exterior and inte-
rior link lengths. These are metric values, but they are closely
related to topological structure. The graph-theoretical back-
ground to our topological analysis is outlined in the Theory
section below.

Diameter and branching

When examining metric properties of root systems, the ques-
tion arises how the diameters before and after branching nodes
are related to each other. Leonardo da Vinci claimed in his
notebook that the cross-sectional area of a trunk or branch of a
tree is equal to the sum of the cross-sectional areas of the
branches at any higher level (Richter 1970). Locally, this
means that in each branching node where n daughter branches
emerge, the diameter d before the node is related to the diame-
ters di (i = 1, ..., n) (Figure 1) of the daughter segments by:

d di
i

n
2 2

1

=
=
∑ . (1)

For a system of conducting tubes with negligible flow resis-
tance, this condition enables equal flow rates throughout the
system. Equation 1 was used in a large number of models of
plant functioning and growth (e.g., Shinozaki et al. 1964,
Perttunen et al. 1996) and was popularized under the names
“pipe stem theory” (John Ruskin, see MacDonald 1983) or
“pipe model.” Examples of theoretical considerations building
on Equation 1 are Mendès France (1981) and Long (1994).

Various generalizations of Equation 1 have been consid-
ered. One of them is:

d di
i

n
∆ ∆=

=
∑

1

, (2)

where the parameter ∆ is called the diameter exponent of the
system (Mandelbrot 1983). Murray (1927) observed that in a
number of aboveground tree branching systems that have been
investigated, weight was approximately proportional to d2.5,
where d is the proximal diameter. From this he concluded (us-
ing additivity of weight in the branching nodes) that ∆ = 2.5
should hold constant. However, his argument was too simple,
because weight is additive only if the contribution of the
mother segment of the branches is neglected. Recalculating ∆,

Mandelbrot (1978) obtained a value of 2, thus confirming
Leonardo's rule.

Surprisingly, direct empirical estimations of ∆ are rare.
Mandelbrot (1983) mentioned a reexamination of data ob-
tained by McMahon and Kronauer (1976) from three tree
crowns, yielding a ∆ near 2 or slightly below. An examination
of three young Picea abies (L.) Karst. crowns (Anzola
Jürgenson 1998) showed no significant deviation from ∆ = 2.
We are unaware of corresponding investigations of root sys-
tems.

Another generalization of Equation 1, utilized by van
Noordwijk et al. (1994) and Spek and van Noordwijk (1994)
in theoretical studies, is:

d di
i

n
2 2

1

=
=
∑α , (3)

with a proportionality factor α > 0. We checked Equations 2
and 3 with our root system data.

Scaling relations

There is much in the literature about scaling relationships and
allometries of whole plants or plant organs; see, e.g., Niklas
(1994) for a general overview. We were motivated to investi-
gate the tapering of our roots by the work of McMahon and
Kronauer (1976) on branch tapering in tree crowns. They re-
lated the diameter d of a segment, taken at some point in the
branching system, to the average length Lp of all paths going
from that segment distally to a branch tip.

From the theory of elastic similarity, they deduced a rela-
tionship of the form d = γ (Lp + l0)β, with constants γ, l0 and β
and with β = 1.5, which was confirmed by their empirical data.
Because the mechanical argument does not apply to root sys-
tems, the question arose whether the same relationship with a
possibly different value of β (or a different form of regression
equation between d and Lp) holds for roots.

Another relationship, perhaps of greater practical signifi-
cance, is that between the diameter d of a segment and the total
length sum L of all roots distal to that segment. A tight correla-
tion between these values, applied to the diameter at the root
collar or to the diameters of the main roots near the collar,
could be useful in estimating total root length. On the basis of
self-similarity assumptions and Equation 3, van Noordwijk et
al. (1994) and Spek and van Noordwijk (1994) obtained a pro-
portionality between L and d2 in artificially constructed
branching patterns. However, they did not seek empirical con-
firmation of this relationship in the field.

Recently, West et al. (1997) derived scaling relations for
vessel systems from the principle of minimal hydraulic resis-
tance and from self-similarity assumptions. Their model coin-
cided with empirical evidence from cardiovascular and respi-
ratory systems of animals, and they claimed to have found “a
general model for the origin of allometric scaling laws in biol-
ogy.” Applied to the mass m of the organism or organ to be fed
and to the proximal diameter d of the supplying vessel, their
model predicts the relation d m= λ ε, where λ and ε are con-
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Figure 1. Principle of Leonardo’s rule, which is expressed mathemati-
cally in Equation 1.
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stants and ε = 3/8. We checked this relationship on the root
systems we studied by inserting the sum of the volumes of all
root segments for m, assuming that this total volume is propor-
tional to m, and root collar diameter for d.

Theory

Graphs of branching patterns

Topology studies the adjacency properties of objects, ignoring
their metric sizes (e.g., lengths, angles, diameters). From the
topological viewpoint, a root system is a graph in the sense of
graph theory (e.g., Deo 1974), i.e., an object consisting of ver-
tices and edges (links), each connecting two vertices. A graph
is completely described by the information specifying which
vertices are connected by an edge and which are not. Because
we have found no anastomosis in our root systems, we can fur-
ther restrict the class of graphs to so-called “trees,” that is,
graphs without cycles. The root collar, where the aboveground
part of the plant begins, corresponds to a special vertex of the
underlying graph, known in mathematical terminology as the
root of the tree. However, to avoid confusion, we refer to the
mathematical root, which in our application is the root collar
or the shoot, as the base vertex. In our topological drawings
the base vertex will be represented by an empty circle. The
base vertex can serve to assign a unique direction to every link
giving rise to a so-called directed tree. In our analyses, we as-
sume a distal orientation of the system, biologically corre-
sponding to the flow of assimilates from the shoot to the root
tips (Figure 2 (the arrows are omitted in subsequent figures)).

Each link not emerging from the base vertex has indegree 1
(i.e., it is adjacent to one mother link in the proximal direc-
tion), and links can have various outdegrees, indicating the
number of adjacent daughter links in the distal direction (Fig-
ure 2). We denote by vk the number of links of outdegree k (k =
0, 1, 2...). When we omit the base vertex, we have an equal
number v = v0 + v1 + v2 + ... of vertices and links.

In the literature, root systems are usually represented by bi-
nary trees, i.e., by trees where every link has outdegree 2 or 0,

and every vertex corresponds to a dichotomous branching
node or to a root tip. However, in our field observations we
found situations where two successive root segments had very
different morphological characteristics, e.g., when an old axis
had stopped apical growth but was the mother segment of a
single, much younger reiterative root. In these cases we as-
signed a higher botanical order to the reiterative root, and we
did not merge segments of different order to a single link. As a
consequence, we obtained some links of outdegree 1 in our
topological graphs. Furthermore, there were cases where sev-
eral branches emerged from the same mother segment at
nearly identical positions (distance of branching nodes
< 5 mm), and we refrained from inserting artificial “mini-
links” only to maintain the binary branching law. Hence we
have some links of outdegree 3 or higher. This leads to a loss
of mathematical elegance for the sake of realism. However,
the number of these “exceptional” links remained limited, and
binary branching can still be considered the normal case.

In binary trees, the number v0 of exterior links (often re-
ferred to as the magnitude of the tree, e.g., Fitter 1986) deter-
mines the number v of all links:

v v= −2 10 (4)

(e.g., Deo 1974, Tucker 1980). In our general case, we must
modify Equation 4 by a correction term or discrepancy (δ):

v v= − +2 10 δ, (5)

with

δ = −
=

∞

∑( ) .2
1

k vk
k

(6)

Only “exceptional” links contribute to δ (notice that v2 makes
no contribution in Equation 6), and, in contrast to v1, all vk with
k > 2 have a negative coefficient.

Topological indices

The most obvious topologically extreme branching forms in
the binary case occur, on the one hand, for the complete di-
chotomous pattern with 2n exterior links of equal distance to
the base, and on the other hand, for a single axis with only one
exterior link emerging at each vertex (“herringbone pattern;”
Fitter 1986, 1987, van Noordwijk et al. 1994). To quantify the
position of an arbitrary binary tree between these extremes, it
is necessary to define a topological equivalent of “rooting
depth.” The topological depth of an exterior link is the number
of links in the unique directed path from the base vertex of the
graph to the end vertex of the link in question (see Figure 2;
terminology in accordance with the notion of “depth-first
search” in computer science, e.g., Grimaldi 1989). The maxi-
mal topological depth or altitude (a) of a directed tree is the
number of links in the (topologically) longest directed path.
This parameter, which is in the binary case minimal for the
complete dichotomous and maximal for the herringbone pat-
tern, is named diameter (Fitter 1986) or altitude (Fitter 1987,
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Figure 2. Example of a directed graph representing a root system top-
ologically. Terminology: X is the base vertex, b, e, f, g are exterior
links, a, c, d interior links, where a has outdegree 3, c outdegree 2, and
d outdegree 1. The topological depth of b is 2 (measured always from
X), that of e, f and g is 3.
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Fitter et al. 1991, Berntson 1995) in the literature on root re-
search and height in most textbooks on graph theory or dis-
crete mathematics (e.g., Deo 1974, Liu 1977, Tucker 1980,
Grimaldi 1989). Somewhat reluctantly, we continue to use the
term altitude here. As a second parameter, we calculate the
mean topological depth b of a directed tree as the average top-
ological depth of all exterior links. Parameter b is of the same
order of magnitude as a, and it is related to pe, the sum of all
pathlengths from the base to the exterior links, which is often
used in the literature (exterior pathlength: Fitter 1986, total ex-
terior pathlength: Fitter and Stickland 1991, total external path
length: Berntson 1995, path length: Deo 1974), by:

b p v= e / .0

The range of possible values of a and b grows with the mag-
nitude v0 of the root system. To enable comparisons of branch-
ing patterns of different sizes, Fitter (1985) introduced indices
based on expected values of a and pe under a specific random
model (Werner and Smart 1973). However, this model was de-
rived for networks in geography and only makes sense for pla-
nar patterns. Unfortunately, the precise expected values and
confidence intervals calculated by Berntson (1995) are also
based on this planarity assumption and are therefore inappro-
priate for 3-D root branching patterns. We decided to avoid
randomness assumptions; instead, we simply normed both pa-
rameters a and b by a linear transformation, making their mini-
mal and maximal values for binary trees (given by Knuth
1973, Fitter 1986) 0 and 1, respectively. The explicit defini-
tions of both resulting normed indices qa and qb, that are con-
fined to the interval [0; 1] for binary trees (but can take values
beyond these limits if v1 > 0 or v3 > 0), are:

q
a v

v v
q

b v

v v v
a b= − −

− −
= − −

+ − −−

1

1

1

1 2
0

0 0

0

0 0
1

0

lb

lb

lb

lb
,

( ) /
,

where lb v0 ( = ln v0/ln 2) is the binary logarithm.
The behavior of these indices is demonstrated in Figure 3

for the six possible binary trees for which one link emerges
from the base. The pattern to the lower right is the herringbone
type, corresponding to qa = qb =1, whereas the value qa = qb = 0
would occur only for a perfectly dichotomous pattern.

The value of qb follows a more continuous course between
the extremes compared with qa. Furthermore, Berntson (1995)
identified the related parameter pe in a series of growth simula-
tions using the Monte-Carlo technique as that with the least er-
ratic and most size-independent and stable behavior among
several other topological indices. We therefore advocate the
use of qb, but in our empirical study we have also calculated a
(and qa) because of its simple definition.

Two further parameters related to topological structure are
the mean lengths of exterior and interior links. Fitter (1986,
1987) and Fitter and Stickland (1991) intensively investigated
these link lengths and their relation to water and nutrient sup-
ply.

Materials and methods

The study site is located on sandveld near Mogorosi (Serowe
Region, Central District, Botswana) between longitude
26°36.26′ and 26°36.70′ E and latitude from 22°25.09′ to
22°25.30′ S. For a more detailed site description see Oppelt et
al. (2000).

The architecture of in situ-grown coarse root systems of the
fruit tree species Strychnos cocculoides (Loganiaceae), Stry-
chnos spinosa and Vangueria infausta (Rubiaceae), as well as
the shrub Grewia flava (Tiliaceae) was studied. Coarse roots
were defined as roots that exceed a threshold diameter of
3 mm. A reconstruction of spatial orientation and branching
below that value was not possible.

Each species was represented by five coarse root systems,
which were excavated by hand. Each exposed root was di-
vided into segments of variable length, according to changes
in growth direction or at positions where daughter roots were
emerging, and marked with white ink. The spatial orientation
(vertical and horizontal angle) as well as the length of each
segment in its original position was determined with a digital
compass (TECTRONIC 4000, Breithaupt, Kassel, Germany)
and automatically recorded (L-file).

After spatial measurements, coarse roots were removed, the
diameter of each segment measured with a digital caliper (PM
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Figure 3. The six topologically distinct binary trees with v0 = 6 distal
edges (links), together with their respective altitude a, mean topologi-
cal depth b and with the corresponding normed indices qa and qb.
They represent the range from dichotomous to herringbone branch-
ing. The parameter b (or qb) allows a better distinction between the
types than parameter a, though both a and b fail to distinguish be-
tween the two upper leftmost types. Notice that the theoretical mini-
mum qa = qb = 0 is not reached in this case because 6 is not of the form
2n.
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200, HHW Hommel, Switzerland), and the data recorded in a
D-file corresponding to each L-file.

Both raw data sets (L- and D-files) were merged by
self-authored interface software, creating the final code for re-
construction. As a basis for the topological description of the
branching systems, a developmental botanical concept of
branching order was applied: the order of the tap root (if it ex-
ists) is 0, and an nth order root has branches of order n + 1. The
branching order was calculated for each segment automati-
cally. For encoding the full geometrical and topological struc-
ture of the root systems (lengths, orientations and diameters of
all segments and mother-segment linkages) we used the digital
tree data format (dtd code, Kurth 1994). The dtd files, each
representing a complete root system, were generated semi-au-
tomatically as described above.

The software GROGRA 3.2 (Kurth 1994) was used to re-
construct the architecture of individual root systems from the
data files in the form of a linked list data structure. Lateral
views of one example root system of each species, obtained
from the software as graphical output, are shown in Figure 4.

The GROGRA software can extract different kinds of
graphical and numerical information from the virtual 3-D
structures. Metric information about each root segment and
about the whole system was written into tabular files and pro-
cessed with the SPSS data analysis software (SPSS 8.0, SPSS
Inc., Chicago, IL) and Statistica v. 5 (StatSoft Inc., Tulsa,
OK). Topological analysis was enabled using a transformation
function in GROGRA, which was originally devised as an in-
terface for a numerical water-flow simulator for tree crowns
(Früh and Kurth 1999). It unifies each chain of subsequent un-
branched root segments of the same botanical order into one
link. Afterwards, the lengths of all links were artificially re-
duced to one to enable topological depth calculations with the
same algorithms that had previously yielded the metric
pathlengths.

Results

Coarse root systems from Grewia flava were characterized by
an intensive shallow network of slowly tapering first-order lat-
erals. Structural roots with higher branching orders developed
mostly in a vertical direction, and exploited deeper soil layers.
Functionally, these replaced the frequently absent taproot. An
intensive development of adventitious roots, especially on
older individuals, was observed.

In contrast to the other root systems investigated, both
Strychnos species were characterized by a deep and prominent
taproot, as a result of secondary growth. Branching intensity
was low and branching orders did not normally exceed 2, so
that they can be described as weakly exploiting root systems.
Both species are distinguished by their vertical root distribu-
tion. Strychnos cocculoides showed the maximum amount and
horizontal extent of first-order laterals in deeper subsoil lay-
ers, whereas Strychnos spinosa showed a greater horizontal
extension of lateral roots with a high concentration in the top-
soil.

In contrast, root systems of Vangueria infausta showed
higher branching intensity. First-order laterals were distinctly
shorter and branched rapidly into higher orders. Most laterals
initiated in the horizontal plane, but changed with time to a
more vertical orientation. If present, taproots tapered rapidly,
never reaching great depth (Figure 4, see also Oppelt et al.
2000).

Quantitative characteristics of all the root systems investi-
gated are given in Tables 1 and 2.

Topological indices

Figure 5 shows the results of the calculation of the topological
indices qa and qb (numerical values given in Table 1), grouped
according to species.

Both indices are closely correlated with each other
(Pearson’s r = 0.92). A one-factorial ANOVA with species as
factor showed a highly significant effect on qa (F = 11.2, P =
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Figure 4. Lateral view of four recon-
structed root systems (graphical output
from GROGRA). The age of each tree
is also indicated.
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0.00033) and qb (F = 11.7, P = 0.00026). This effect was even
more pronounced when the age of the tree was considered as a
covariate (qa: F = 20.5, P = 1.4 × 10–5; qb: F = 14.7, P = 9.8 ×
10–5). The root system of Tree 509, a Strychnos spinosa speci-
men with clear reiterative growth because of damage and an
unusual growth habit, had atypically low topological indices
compared with the other four S. spinosa root systems. When
this abnormal specimen was omitted from the analysis of
covariance, the significance of the species effect was further
enhanced (qa: F = 27.3, P = 4 × 10–6; qb: F = 24.7, P = 7 ×
10–6). A closer look at the numbers (least significant differ-
ence test) showed that all species (except Grewia flava versus
Vangueria infausta) could be separated from one another at
the 5% level using either qa or qb (Tree 509 removed; Statistica
post hoc tests). In particular, the two Strychnos species, tend-
ing to a herringbone structure, differed markedly from the two
other species. Figure 6 demonstrates this difference in topo-
logical architecture in Strychnos cocculoides (Tree 412; upper
part of figure) and Vangueria infausta (Tree 711; lower part)

root systems, both shown in their metrical (left) and topologi-
cal (right) reconstruction. The age of the corresponding trees
was 17 and 19 years, respectively. Both topological indices
had a tendency to decrease slightly with age (R(qa, age) =
–0.50, R(qb, age) = –0.28).

As an alternative topological index, Fitter (1985, 1986,
1987) investigated the slope that a collective of root systems
exhibits in a diagram where altitude a is plotted against magni-
tude v0. We performed this type of analysis for the subset of
the Strychnos samples contrasted to the other species (diagram
not shown) and obtained a difference corroborating our find-
ing that the two Strychnos species differed considerably in
root system topology from the Grewia and Vangueria speci-
mens that were investigated.

Link lengths

The same distinction emerges for the metric parameter mean
exterior link length (le) (empty bars in Figure 7, cf. Table 2).
An ANOVA with species as single factor yields a highly sig-
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Table 1. Topological parameters of the root systems of each sample tree.

Species Tree Age v1 v0
2 δ3 a4 b5 qa

6 qb
6

Grewia flava 203 25 252 138 –23 23 9.41 0.11 –0.02
206 21 127 78 –28 10 4.09 0.04 –0.10
213 18 100 54 –7 16 8.09 0.20 –0.06
214 14 47 23 2 11 4.74 0.31 –0.11
215 13 37 20 –2 13 6.45 0.52 –0.18

Mean 18.2 112.6 63.0 –12.4 14.6 6.56 0.24 0.013
SD 5.0 86.3 49.2 14.15 5.22 2.23 0.19 0.12

Strychnos cocculoides 405 23 92 50 ..–7 31 13.62 0.58 0.36
409 15 39 20 0 16 9.90 0.73 0.75
412 17 25 13 0 12 7.62 0.88 0.90
425 29 76 38 1 23 12.58 0.53 0.45
426 13 28 14 1 12 7.79 0.78 0.82

Mean 19.4 52.0 26.8 .–0.6 18.8 10.30 0.70 0.66
SD 6.5 30.2 16.0 2.51 8.17 2.73 0.14 0.24

Strychnos spinosa 501 20 127 73 –18 33 18.21 0.39 0.36
508 12 48 26 –3 15 8.08 0.46 0.27
509 17 16 9 –1 5 3.89 0.17 –0.16
510 15 86 48 –9 27 13.08 0.49 0.34
511 12 67 35 –2 22 11.77 0.55 0.44

Mean 15.2 68.8 38.2 –6.6 20.4 11.01 0.41 0.25
SD 3.4 41.6 24.1 7.09 10.85 5.38 0.15 0.24

Vangueria infausta 703 36 371 188 –4 18 11.02 0.05 0.03
708 21 114 61 –7 16 9.36 0.17 0.10
711 19 75 35 6 16 8.63 0.34 0.19
712 25 92 48 –3 19 10.04 0.30 0.18
713 25 123 60 4 17 10.77 0.19 0.16

Mean 25.2 155.0 79.4 –2.8 17.2 9.96 0.21 0.13
SD 6.6 122.2 64.4 8.17 1.30 0.99 0.11 0.07

1 v = Number of links.
2 v0 = Number of exterior links.
3 δ = Discrepancy (see Introduction).
4 a = Altitude (maximal topological depth).
5 b = Mean topological depth.
6 qa, qb = Normed values corresponding to parameters a and b.
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nificant effect on le (F = 7.31, P = 0.0027) that becomes even
more pronounced when age is included as a covariate (F =
8.44, P = 0.0016). A post hoc test enabled a statistical separa-
tion of all species from each other at the 5% level, except for
the two pairs Grewia flava versus Vangueria infausta and
Strychnos cocculoides versus S. spinosa. In contrast, mean in-
terior link length (li; black bars in Figure 7) showed no differ-
ence between species, regardless of whether age was included
as covariate (F = 0.97 and 0.82, respectively; P > 0.4).

Leonardo’s rule

We estimated the diameter exponent ∆ from Equation 2 for
each root system separately and for the whole population of
branching nodes, by nonlinear regression analysis (iterative
Hooke-Jeeves coordinate search, independent control with
quasi-Newton method; Statistica 5). The iteration converged
in all cases and explained a large part of the variance (see left
half of Table 3). Because the oldest and largest root segments

were potentially linked to rotten parts of the system that could
not be measured, we also conducted the analysis for the
subsample of branching nodes where the mother segment did
not exceed a threshold diameter of 20 mm (right-hand half of
Table 3), thus focusing on the younger parts of the system.
Generally, the resulting average best-fit exponent (2.29 and
2.18 for the unresticted and restricted samples, respectively)
did not contradict the theoretical assumption of Leonardo’s
rule (∆ = 2).

Adopting this value for ∆, we checked linear regressions be-
tween d 2 and dii

n 2

1=∑ for all branching nodes. These gave tight
fits for all individual root systems. Statistically, it was not pos-
sible to prove or disprove that the proportionality factor α (cf.
Equation 3) is 1 and the intercept 0. However, no systematic
deviation from these values was detected (see Table 4).

Length and diameter

At the level of whole root systems, we related the root collar
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Table 2. Geometrical parameters of the root systems of each sample tree.

Species Tree cd1 rmax
2 L3 Lp

4 V 5 le
6 li

7

Grewia flava 203 97 5708 190509 2568 8304 851 641
206 65 3267 73076 1257 2884 652 454
213 58 3349 58991 1906 1769 614 562
214 32 1603 19723 1078 522 538 306
215 27 1506 8419 587 274 305 136

Mean 55.8 3087 70144 1479 2751 592.0 419.8
SD 28 1708 72410 770 3276 198 202

Strychnos cocculoides 405 56 2480 38247 1430 2443 644 144
409 67 4385 24595 2238 2932 920 326
412 48 3880 18930 2495 1599 1113 372
425 68 3417 50814 2428 4248 976 361
426 44 3020 20849 2282 1407 876 613

Mean 56.6 3436 30687 2175 2526 905.8 363.2
SD 11 739 13550 429 1146 171 167

Strychnos spinosa 501 72 5990 113735 2279 5682 1345 288
508 60 4230 42970 2737 3643 1262 462
509 40 1447 10545 1863 1011 769 517
510 64 2758 49307 1569 2983 901 160
511 44 2738 34700 1594 1487 768 245

Mean 56.0 3433 50251 2008 2961 1009.0 334.4
SD 14 1736 38414 498 1860 276 150

Vangueria infausta 703 140 5070 207137 2526 12440 718 394
708 86 3642 51750 1929 2989 580 309
711 48 1708 24645 1442 1282 412 255
712 60 1247 24825 895 1084 366 164
713 70 1547 34910 1058 1496 361 210

Mean 80.8 2643 68653 1570 3858 487.4 266.4
SD 36 1652 78198 667 4856 157 89

1 cd = Root collar diameter (mm).
2 rmax = Maximal radial extension of the system (mm).
3 L = Total coarse root length (mm).
4 Lp = Mean path length (mm).
5 V = Total coarse root volume (cm3).
6 le = Mean exterior link length (mm).
7 li = Mean interior link length (mm).
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diameters cd to the total length, L, of the measured roots. The
value of L was obtained by adding the lengths of all root seg-
ments. The linear regression of log cd (independent variable)
versus log L (dependent) yielded a slope of 1.95 (intercept
1.15, r2 = 0.75, n = 20; see Figure 8). This is close to the
allometric exponent 2 proposed by van Noordwijk et al.
(1994) for the relationship between base diameter and total
length.

Diameter can also be related to root size in topological
terms. Replacing total length L by the number of links v, we
compared log cd with log v (cf. Spek and van Noordwijk
1994). The resulting regression was somewhat less tight (slope
1.61, intercept –0.98, r2 = 0.62) than in the case of log L.

The relationship between diameter and length can also be
studied at the level of individual root segments within a sys-
tem. Besides the total length L distal to a given segment, we
used GROGRA to calculate the mean distal pathlength Lp

(values in Table 2) and maximal distal pathlength Lmax (not
shown). Both Lp and Lmax typically exhibited a broad scatter-
ing when plotted against root segment diameter. Tentative
nonlinear fitting of the equation d = γ(Lp + l0)β from McMahon
and Kronauer (1976) yielded generally unconvincing results
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Figure 5. The topological indices qa (empty bars) and qb (black bars)
of the root systems investigated.

Figure 6. Examples of two contrasting root systems in their metric
view (left side) and in the form of a topologically equivalent pattern
with approximately equal link lengths (right side). Upper part: A
Strychnos cocculoides (Tree 412) with nearly herringbone topology,
lower part: A Vangueria infausta (Tree 711) with intensive dichoto-
mous branching in some parts of the system.

Figure 7. Mean exterior link length le (empty bars) and mean interior
link length li (black bars) for each of the root systems investigated.

Table 3. Nonlinear regression results for the diameter exponent ∆.
Abbreviation: CD = coefficient of determination.

All d ≤ 20

Tree ∆ CD ∆ CD

203 3.02 0.96 3.23 0.92
206 1.98 0.91 2.58 0.68
213 1.61 0.96 2.48 0.89
214 1.43 0.51 2.58 0.68
215 1.65 0.56 2.58 0.68
405 6.27 0.91 2.65 0.96
409 1.70 0.96 1.51 0.93
412 1.81 0.96 3.07 0.93
425 1.98 0.99 1.69 0.90
426 1.58 0.97 1.43 0.83
501 2.39 0.98 1.84 0.92
508 2.11 0.98 2.56 0.90
509 1.84 0.87 1.23 0.87
510 2.38 0.97 1.91 0.96
511 2.04 0.98 1.64 0.95
706 2.08 0.98 2.48 0.92
708 2.74 0.66 2.08 0.92
711 3.65 0.95 2.21 0.89
712 1.81 0.98 1.89 0.97
713 1.77 0.99 1.96 0.92
Mean 2.29 0.90 2.18 0.88
SD 1.08 0.15 0.55 0.09
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(slow convergence; and the shape of the scatterplot was poorly
reflected by the regression curve). Total distal root length L
showed a better correlation to segment diameter, particularly
when only small diameters were considered (e.g., Figure 9).

Correlation was not improved when d was replaced by d2 in
the linear regression approach for L. Only for the largest and
oldest segments was the fit better in the quadratic case.

Root volume and diameter

At the level of whole root systems, we found a good correla-
tion between log (root collar diameter) and log (total coarse
root volume), shown in Figure 10 (slope 2.19, intercept 2.47,
r2 = 0.84, n = 20). The slope of the regression lines (ω in the re-
lation V = θdω) was relatively stable among the four species in-
vestigated.

Discussion

In a methodological sense, our study—together with earlier
results from the same data (Oppelt et al. 2000)—demonstrates
the large amount of information that can be extracted from one
architectural database by means of 3-D reconstruction and
analysis. Until now, the advantages of detailed 3-D recon-

struction of branching structures have mainly been
appreciated in studies of aboveground plant architecture
(Sinoquet and Rivet 1997, Godin et al. 1999). The diverse
pieces of information are like a puzzle from which a picture,
giving better insight into structural and functional aspects of
plant architecture, can emerge. Furthermore, the architectural
data can be the basis for simulation studies (e.g., Früh and
Kurth 1999 for aboveground structures).

When our data are compared with results from the literature,
our restriction to coarse roots (d ≥ 3 mm) has to be taken into
account. Most published studies on root system topology con-
sider small seedlings in which all roots, including the finest,
were measured. The topology of fine root branching could dif-
fer from the patterns found at the coarse root scale. The differ-
ences that we identified in our root systems between fractal
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Table 4. Results of regression for Leonardo's rule. Dependent vari-
able: d2, independent: sum of d2 of all daughter segments.

Species Slope Intercept r2

Grewia flava 1.13 –29.4 0.89
Strychnos cocculoides 1.00 17.9 0.90
Strychnos spinosa 1.02 –5.7 0.97
Vangueria infausta 0.92 46.4 0.94
Mean 1.02 7.3 0.93
SD 0.09 32.4 0.04
Total population 0.99 28.0 0.92

Figure 8. Logarithms of root collar diameter (cd) and total coarse root
length (L) of all 20 investigated root systems, together with the
best-fit regression line (see text).

Figure 9. Diameter d and total distal root length L of all segments with
3 < d < 15 mm from a Grewia flava coarse root system (Tree 213).
Shown also is the linear regression L = –1823 + 583 d (r2 = 0.81, n =
1323) for this individual root system.

Figure 10. Logarithms of root collar diameter (cd) and of total root
volume (V ) of all 20 root systems investigated, together with the
best-fit regression line (see text).
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dimensions at coarse root and fine root scales (Oppelt et al.
2000) indicate that such a structural gap between the two
scales might exist for topology as well.

The large values of average exterior and interior link lengths
in our study (ranging from 14 cm to 1.3 m), which lie almost
one order of magnitude greater than values reported by Fitter
(1987) for a number of herbaceous plants and tree seedlings,
are probably also due to our omission of roots < 3 mm.

In a qualitative sense, it is well known that a deep taproot
with little lateral growth is adapted to dry environments (Ep-
stein 1973). In quantitative simulation studies, Fitter et al.
(1991) found that herringbone root systems have a higher ex-
ploitation efficiency in terms of soil volume accessed, but re-
quire more carbon for construction compared with dichoto-
mous patterns of equal magnitude. Hence the herringbone
pattern is likely to be favored when soil resources limit
growth. We conjecture that in the case of our sample trees—all
grown under arid conditions—the two Strychnos species are
more specifically adapted to extreme drought than the other
two species investigated. This is consistent with the observa-
tion that both Strychnos species exhibit a distinct xeromorphic
habit in their leaf morphology, whereas Grevia flava and
Vangueria infausta show less pronounced xeromorphic crown
features. Root system topology and exterior link lengths thus
appear to be indicators of ecophysiological differences in
drought adaptation.

Because the root systems considered in this study have also
been investigated for their fractal dimension D (see Oppelt et
al. 2000), the question arises whether D is related to topologi-
cal parameters. In fact, the topological index qa is negatively
correlated with D (r = –0.56): the more a root system conforms
to the herringbone pattern, the lower its space-filling potential
and its fractal dimension. However, our findings also show
that a considerable amount of variance of D cannot be ex-
plained by purely topological properties (all other parameters
calculated in this study showed a weaker correlation with D
than that obtained for qa). Hence the fractal dimension D re-
mains a characteristic in its own right, integrating topological
and geometrical properties of a whole root system (Fitter and
Stickland 1992).

The diameter exponent of most of the root systems we in-
vestigated was close to the ideal value of 2, indicating preser-
vation of cross-sectional area in the branching nodes. Thus,
application of Leonardo’s rule in models of secondary growth
and hydraulic function, which is quite common in the litera-
ture, is corroborated—at least for coarse roots. Given the high
hydraulic conductivity of coarse roots (Riedl 1937, Fahn
1964, Lafolie et al. 1991), this amounts to a homogeneity of
flow velocity throughout the system, provided there is a con-
stant proportion of functional xylem in all coarse roots.

Van Noordwijk et al. (1994) and, more generally, West et al.
(1997) derived several scaling laws from the theoretical as-
sumptions of self-similarity and preservation of flow. These
laws were confirmed quite well when we checked them at the
level of whole root systems. Total length of coarse roots is
roughly proportional to cross-sectional area of the root collar,

as predicted by van Noordwijk et al. (1994), and a particularly
stable fit was found between total volume of coarse roots and
collar diameter (Figure 10), although the exponent of the di-
ameter in this relation, 2.19, deviates slightly from the
theoretical value of 2.67 predicted by West et al. (1997). Our
number of replicates was too small for statistical security at
the whole-system level, but nevertheless it seems possible to
use root collar diameter as a predictor of total coarse root
length and biomass on the basis of these scaling relations.

However, the picture becomes more complex when the
lengths and diameters inside the root system are considered.
Our exemplary Figure 9 shows considerable variance, but also
some traces of structured patterns in the data. Simple power
laws like those proposed by McMahon and Kronauer (1976)
or van Noordwijk et al. (1994) seem inadequate to describe
these structures. The distribution of link lengths in the root
system is much more complicated than these authors assumed
in their self-similar models. Crawford and Young (1990) sug-
gested that, in branching systems of higher plants, a spectrum
of scale factors, which itself has a fractal signature, may oper-
ate. Our data do not contradict this assumption. Our topologi-
cal results suggest that the architecture of the sample systems
has features that do not fit into the standard self-similar
branching models. Morphological features like developmen-
tal axes, reiteration or functional differentiation of root seg-
ments may contribute to this internal complexity.

Conclusions

The architectural comparison of four species has revealed sig-
nificant differences, resulting in a coherent picture: the two
Strychnos species tend to have a root system topology con-
forming nearly to the herringbone pattern and large un-
branched zones at the distal ends of their root axes. This is in
accordance with the general appearance of these root systems
(Figure 4; see also Oppelt et al. 2000) and indicates an
explorative strategy of root system architectural development,
whereas Grewia flava and Vangueria infausta, have a topol-
ogy tending to dichotomous or intermediate patterns and
shorter exterior links that may possibly exploit smaller vol-
umes of soil more thoroughly.

It will be necessary, however, to complement our study by
investigations of fine root distribution, because the diameter
threshold of 3 mm prevented a direct calculation of exploited
soil and total root biomass. Nevertheless, the pattern of coarse
roots sets structural constraints on the extent and locations of
fine root development, and thus has implications for resource
capture and efficiency of growth.

Our empirical test of cross-sectional area preservation sup-
ported the pipe stem theory, justifying the use of this simple
rule in simulation models.

Likewise, some scaling laws deduced from theoretical con-
siderations, particularly that of West et al. (1997), were con-
firmed by our data and can be used to predict parameters of
whole coarse root systems from root collar diameter. How-
ever, a closer consideration of the inner structure of the root
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systems revealed more complicated patterns that could not be
expressed in simple allometric relations.

Generally, we believe that further improvements in our un-
derstanding of root system architecture, beyond the character-
istics described in this study, can be obtained only if onto-
genetic development is taken into account (Colin-Belgrand et
al. 1989, Raimbault 1991). Root architecture results from an
interplay between endogenous growth laws and opportunistic
reactions (Atger 1991). Dynamic studies of growing root sys-
tems are, however, difficult and rare, particularly in the case of
large trees; therefore, it makes sense to extract as much infor-
mation as possible from the static data at our disposal.
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