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A statistical description of the branching patterns of trees is proposed in 
the context of a power-law tapered beam model. Depending on the expo- 
nent which describes tapering of the depth of the beam, the model either 
preserves geometric, elastic, or static stress similarity. A detailed study of 
the morphometry of three oak, one poplar, one cherry, and one white 
pine corroborates the stationarity of these branching structures and fits 
the elastically similar model. A separate study of the natural frequencies 
of branch segments and whole trees within four species also agrees with 
the predictions of the elastically similar model. 

1. List of Symbols 

N = number of segments in a particular order. 
n = order number. 
T = links in order one. 

RB = branching ratio, average iV(n)/N(n + 1). 
RD = diameter ratio, d(n+ I)@(n). 

d, a = diameter of a link, average diameter within an order. 
s = distance from virtual origin in power-law model. 
k = depth of doubly tapered power-law beam. 
b = breadth of doubly tapered beam. 
J? = power of depth taper, Fig. 2. 
CI = power of breadth taper, Fig. 2. 
;1 = overall length of beam, from built-in end to virtual origin. 
A = deflection of the tip due to loading by the beam’s own weight. 
f, = natural frequency in lowest mode of vibration. 
w  = 2rEf,, angular natural frequency. 

443 



444 T. A. MCMAHON AND R. E. KRONAUER 

I,, = length between virtual origin and cutoff point. 
I max = distance from the clamp to the tip of the longest branch in the 

frequency-length measurements. 
L, = average path length, equation (1). 
Zij = a single path length. 
e, = number of first-order endings served by a link i. 
p = mass density. 
E = elastic modulus, slope of stress-strain curve. 
Y = correlation coefficient. 

8i, 8, = chord angles, Fig. 8. 

2. Introduction 

It is a popular notion that trees occurring in nature have evolved branching 
patterns which perform their task in some optimal way, but the principle 
of optimality which is presumably the principle of their mechanical design 
has yet to be discovered. Geomorphologists interested in river patterns 
pioneered the application of quantitative methods to branching networks 
only relatively recently. Although Gravelius (1914, quoted by Woldenberg, 
1968) applied the concept of ordering to a river network by assigning a 
heirarchy of integers to the various links (a link is a connecting element 
between two nodes), his aim was to identify the orders according to the 
historical development of the river, labeling the original main trunk as first 
order and later streams as higher order. Woldenberg points out that rivers 
labeled by this system have totally different values for order applied to 
branches of equivalent size. 

Horton (1945) introduced an ordering scheme which provided better 
correlation between order number and stream size. Under Horton’s scheme, 
two separate operations are required to assign the final order number. In 
the first operation, all terminal links are assigned order number 1, and when 
first-order links meet they form a link of order 2. For convenience, and with- 
out loss of generality, each branching is assumed to be dichotomous. When 
two daughters of different order meet, the resulting parent takes the same 
order as the higher of the two joining links. Thus a 3 and a 2 merge to give a 
3, as do a 3 and a 1, but a 3 and a 3 merge to give a 4 [Fig. l(a)]. In the 
second operation, many of the order numbers are changed. Starting with the 
main trunk, a path is traced to a terminal link choosing the larger order 
number at each junction. At a junction where daughters of equal order meet, 
one is arbitrarily chosen over the other to continue the path. This path 
retains the same order number as the main trunk. The procedure is repeated 
for streams of the next-highest order, and so on down to second-order links 
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FIG. 1. Ordering and symmetry. (a) Horton’s first operation, which is identical to 

Strahler ordering, provided that all contiguous links of a given Strahler order are counted 
as a single segment, Thus there is one segment of order 4,2 segments of order 3,s segments 
of order 2, and 11 segments of order 1 in the figure. (b) Horton’s second operation. (c) A 
symmetric branching pattern, in which the Strahler order number changes at each node. 

[Fig. l(b)]. Contiguous links of the same order are counted as one segment. 
Horton found that when a river is ordered this way, there is a linear relation 
between order number and the logarithm of population of segments of that 
order. Horton’s method is subject to the same objection raised earlier for 
Gravelius’, that streams of like magnitude may have a different order 
number. 

Strahler (1953) suggested the modification that only the first operation of 
Horton’s method should be used, with no reclassification. Strahler’s method 
has been useful for describing not only rivers, but the bronchial tree and 
pulmonary arteries (Cumming, Henderson, Horsfield & Singhal, 1969; 
Parker, Horsfield & Cumming, 1971; Woldenberg et al., 1970) bile ducts in 
the liver (Woldenberg, 1968) and botanical trees (Holland, 1969; Barker, 
Cumming & Horsfield, 1973). One of us has previously published a popular 
account of much of the substance of the present paper, including the appli- 
cation of Strahler ordering to trees (McMahon, 1975). 

A symmetric branching pattern is one in which the Strahler order changes 
at each node [Fig. l(c)]. In such a pattern, the number of segments is given 
by N = 2T(2)-“, where T is the total number of segments of order 1. Thus 
log N = log 2T-n log 2, so that the slope of a plot of 1ogN vs. n is a 
negative number, the antilog of whose absolute value (in this case 2) is the 
branching ratio RB, the average factor by which the population of order IZ 
exceeds that of order n+ 1. The best straight line fit of log N vs. n defines 
the branching ratio even for asymmetric structures, as in Fig. l(a). In 
Strahler ordering, the branching ratio may not be less than 2, but may be 
any higher number, where the degree of asymmetry (the “depth” of the 

T.B. 29 



446 T. A. MCMAHON AND R. E. KRONAUER 

structure) increases with K,,. Similarly. the mean diameter of branches in 
any order plotted vs. order number oi‘ a semilog plot yields the diameter 
ratio R, as the antilog of the slope, which may possibly be the same between 
all orders. 

Horsfield (1967) has suggested still another consistent ordering scheme. 
The Horsfield order of the parent is always one greater than the greatest 
order of the two daughters. Thus the Strahler and Horsfield schemes are 
identical for symmetric branching but the same asymmetric structure has a 
greater number of Horsfield orders than Strahler orders. Horsfield (1972) 
has investigated the relative merits of both ordering schemes and concluded 
that the Strahler method is to be preferred in many situations, since in 
markedly asymmetrical systems, Horsfield ordering may not give a straight 
line relation between log N and IZ because of the necessity of changing the 
order of the main trunk whenever it is joined by the slightest twig. 

In this paper, we shall be seeking the optimality principle by which 
botanical trees may be said to be designed. This purpose requires us to be 
aware not only of the topology of the tree but of the actual length and 
diameter of each link, since these determine the stiffness, strength, and also 
the load which the limbs must bear at any point within their structure. Thus 
the concept of order number will be augmented by a new descriptor, the 
average distance along a branch from the twigs, which has the dimensions 
of length. However, when we do invoke the concept of order number we will 
be using the Strahler system. 

3. Optimality Principles and Structural Models 

It is possible to suggest models for optimal branching structures which do 
not make use of the concept of order number at all. Consider the tapered 
cantilever beam of rectangular cross-section in Fig. 2(a) and (b). The depth h 
and width b taper with length s from the virtual origin according to power- 
law rules h = kit’, b = k,s@. This beam represents a limb growing out from 
the trunk of a tree, or even the whole tree itself. It may be shown that cuts 
made on the dotted lines in the plan view of Fig. 2(a) do not change the 
deflection of the structure under its own weight. The self-loaded unbranched 
beam (before cutting) is statically and dynamically the same as the branched 
beam (after the cuts have been made). The cuts may be spread uniformly to 
give the branching structure in Fig. 2(e) without changing this conclusion. 
One may also derive (Appendix A) that if the structure is elastically self- 
similar (i.e. the deflection of the tip, A, divided by the overall length, il, is a 
constant, however much J. may vary), then /I = 3, whatever the value of a. 
As an alternative hypothesis, if the stress in the fibers at the top and bottom 
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FIG. 2. Tapered power-law beam model. (a) Top view, showing how the breadth b tapers 
according to b = kg”. (b) Side view, showing how depth h tapers according to h = k&. 
(c) Side view showing how the weight acts to produce a tip deflection A. (d) The shaded 
element in part (c) redrawn to a larger scale, showing the stress u acting at a distance y  
from the neutral axis. (e) Top view of the beam, showing how the cuts made in (a) may be 
sepzated to give a tree structure. 

surfaces of the beam are to be kept the same over the entire length, then 
/I = 2, provided the deflections are small, again independently of the choice 
for c1 (Appendix A2). 

In what follows, we will examine morphometric data from several tree 
species in an effort to determine which, if any, power-law model gives a 
successful description of the true structure. We will be aided by an obser- 
vation which is simple to make in the field, the natural frequency in the lowest 
mode of bending. As shown in Appendix Bl, the beam tapered to insure 
elastic similarity (/I = 3) has a natural frequency f. proportional to I-1. 
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This stands in contrast to the geometrically similar tapered beam (/3 = l), 
where fn cc ,I-‘, the uniform-stress tapered beam j = 2), where J;, is inde- 
pendent of 1, and the untapered beam (B = 0) wheref, is proportional to A-‘. 

4. Branching as a Random Process 

Before comparing the deterministic models of the previous paragraph with 
actual trees, it is reasonable to ask how randomness found in nature fits into 
the discussion. Trees develop their branching structures as the result of the 
three interacting processes of bifurcation (sprouting), growth (in length and 
diameter) and death (self pruning). Without a study of the time history of 
development, a statistical description of this randomness cannot be had. 
However, an instantaneous view of the structure at one time does permit a 
statistical description of the way in which the several dynamic processes have 
interacted up to that time. If this combined random process is stationary, a 
comparison of two trees of different size (in the same physiologic condition), 
or two regions in the same tree should give the same statistical branching 
rules. It is this hope which appears to have motivated all the previous origin- 
ators of ordering schemes, since stationarity is implicit in the concept of a 
single branching ratio throughout a tree. 

There exists extensive evidence supporting the argument for stationarity. 
In three species of mallee Eucalyptus, Holland (1969) examined trees between 
2 and 20 years of age and found RB independent of age. Oohata & Shidei 
(1971) found a stable value for the RB of 7-year old Quercus philliraeoides, 
despite large controlled differences in density of planting and light intensity 
levels. In several species of both evergreen and deciduous trees, they found 
RB fixed for a species, although the evergreens have a consistently higher RB 
(near 5-O) than deciduous trees (near 3 .O). Leopold (1971), found a constant 
R, throughout the orders of a 12-year old fir (Abies concolor), two ash 
(Fraxinus sp.) and a small tulip (Liriodendron tulipifera). Barker et al. (1973) 
found constant R, within an apple and a birch tree, although the Re’s for 
the two species were different. Horsfield (1972) grew tree patterns on a 
computer by employing certain rules guiding random number generators 
and found RB a constant within any completed pattern, although R, could 
be different between two patterns grown under different rules. 

Does the very fact that R, is found to be a constant within a given tree 
have something to do with optimality or the principle of its mechanical 
design? No, as Horsfield’s computer-grown trees demonstrate-this is a 
property of all random branching patterns. Does the particular value of RB 
within a tree have to do with its mechanical design? No again, or every species 
would be seen to be optimizing itself according to a different principle. We 
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suggest that RB in a species is directed in part by some mechanism, perhaps 
genetic, which is entirely unrelated to the optimality principle which decides 
the mechanical proportions (i.e., statistically independent). It is as if all trees 
started as the same blank doubly-tapered beam in Fig. 2(a) and the choice 
for a and cuts were made in such a way as to produce a high R, in some 
species and a low RB in others. Note that RB, and thus the “depth” of the 
structure, increase as CI decreases. A direct correlation between CI and RB is 
not easy to make because the Strahler system is not “continuous”, i.e., links 
of adjacent order do not necessarily touch one another. The point to be 
remembered here is that 6, and thus RB, according to the tapered-beam model, 
are independent of the principle of mechanical design, but since /I represents 
that principle, we should not be surprised to find B the same in trees of very 
different outward appearance. 

5. Methods and Procedures 

The length and midpoint diameter of each quasi-cylindrical link of one 
poplar, three oak, one cherry, and one white pine were measured. The 
measurements necessarily began at the tips of the twigs, not at the virtual 
origin where the h dimension, or diameter of the twig, is zero [Fig. 2(b)]. 
Only live branches were considered; all dead structures were removed before 
measuring began. The first-order links (twigs) were all found to be about the 
same diameter in a given species. This observation facilitates comparison 
with the power-law models, since at the cutoff point s = I, in Fig. 2(a), one 
would expect the diameter [given by h(Z,)] to be roughly constant. The red 
oak was such a large tree that we had to discontinue measurement for 
branches less than 1 cm in diameter. This had the effect of increasing I,, by 
a large factor without otherwise influencing the measurements. 

The only criterion applied to selection of the trees was that they be found 
standing reasonably alone. The trees were felled for convenience in making 
the measurements. Following the convention established by Horsfield & 
Cumming (1968), we assigned each link an arbitrary identification number, 
and recorded this number along with the number of its parent, its length, 
and its diameter at the midpoint. The data were processed by a computer 
program which was able to recreate most of the topological details of the 
tree. The tree specimens are identified in detail in Table 1. 

As a separate study, we measured the natural frequency in a series of 
limbs of different length and in whoie trees of three species. After securing 
the limb with a bench vice at the desired length, the distance I,,,,, to the 
extreme tip of the limb was measured, and the limb was manually excited in 
its lowest mode of vibration. The frequency was obtained by counting the 
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number of cycles completed in a given time. The oscillations were restricted 
to a small enough amplitude so that doubling the amplitude had no effect on 
the natural frequency. Observations were made both before and after the 
leaves appeared during the spring, summer, and fall of 1974 on trees found 
near Ripton, Vermont, and Harvard, Massachusetts. 

6. Results 

If trees were perfectly symmetric branching structures, it would be a 
simple matter to compare them with the model in Fig. 2, since there would 
be an unambiguous length to the tip, S- &, associated with each diameter h(s). 

In dealing with the statistics of real trees, we choose to represent h(s) by 
the local link diameter di, where i is the identification number. This link will 
service m end twigs, and each will have an associated length-to-tip Ii,, 
1 I j I m. We represent the effective length-to-tip as the average of these 
individual Iii. 

(S - l,)j = Li = t ,il Iij 
J 

(1) 

In what follows we will use the expression “path length” to denote length- 
to-tip and it will be understood that path length includes the length of the 
local link. 

The local diameter may be expected to correlate more successfully with 
this average path length Li than with any single path length Iii, since the path 
following a small branch joining the main trunk experiences a large change 
in both Lj and di at the junction, but only a small change in lij. 

Stationarity 

In a perfectly symmetric branching structure, (Rs = 2), all path lengths 
/ij from link i leading to a first-order twig are equal, so a histogram showing 
the probability that a randomly selected path has a given normalized path 
length l,lLi shows a sharp spike (S-function) centered at f,/Li = 1.0. 

Deviations from symmetry may be of two kinds. First, topological sym- 
metry may be preserved, (& = 2) but the lengths and diameters of the 
individual links may vary in some random way. Second, the topology may 
vary randomly (R, > 2). Both effects tend to broaden the probability 
histogram for path length. Notice that if the structure is statistically stationary 
throughout the tree then the shape of the normalized length histogram will 
be the same at any point in the tree.7 

t To be more precise, a small length to the virtual origin must be added to both the 
individual path lengths, I,,, and the average length, L,, in the formation of the normalized 
histogram. 



452 T. A. MCMAHON AND R. E. KRONAUER 

Figure 3 shows path length probability curves for the large white oak, the 
poplar, and the pine. The two curves in each part of the figure represent the 
ensemble average curve for a typical distal link (serving a small number of 
endings eJ as opposed to a typical proximal link (serving a large number of 
endings). The two curves in each part are roughly the same shape, neither 
being more peaked nor more broad than the other. This is true despite the 
fact that the shapes of the curves in Fig. 3(c) are somewhat different from 
those in Fig. 3(a) and (b), since each species has its own characteristically 
shaped curve. 

4, /Li 

FIG. 3(a) 

0.08 

k 0.06 

I I I 
0 02 04 06 08 IO 12 14 I.6 l-8 20 

$4 

Frc.‘3(b) 
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/,j/Li 

FIG. 3(c) 

FIG. 3. Path length probability histograms. The probability that a given path from link i 
to a first-order termination has length Irj is p. The ahcissa is normalized with respect to 
the average length to the tip, L,. The curves represent the ensemble average of path length 
probability histograms taken over all links in the tree whose number of endings served, e,, 
falls within a given interval. (a) Large white oak: 16 I e, 5 20 for the curve marked S, 
and 100 5 e, 5 110 for the curve marked L. (b) Poplar: 11 < e‘ I 15 for the curve S 
and 71 I: e, I 80 for L. (c) White pine: 11 I e, 5 15 for S and 51 5 e( S 60 for L. 
Perfect stationarity of the branching structure implies that the S and L curves in each 
specimen are identical. 

The number of segments in an order and the average diameter of segments 
in that order are summarized in Table 2 for the six specimens. The semi-log 
plots in Fig. 4 for the two white oaks of different size show almost identical 
branching ratios and radius ratios. The diameter plot shows that both oaks 
have nearly the same average diameter in each order up to the two highest 
orders where they diverge somewhat. This behavior would be expected if 
trees followed the power-law model developed earlier, since average diameter 
should be more closely correlated with L, -I- 1, than with order number. Order 
numbers are discrete whereas Li+/, is continuous: as a tree grows larger, 
there are only a very few occasions when it increases its highest order number, 
even though it is continuously increasing its overall height. Thus the 
diameter-order pIot in Fig. 4(b) would wag like a tail each time the tree grew 
large enough to add an extra order. The fixed base of the tail would be the 
mean line observed at low order numbers; the wagging would occur in the 
higher-order segment. 

Optimality principle 

In a previous paper, (McMahon, 1973), one of us has argued that trees 
generally limit their overall height to about & the critical buckling height of 
a uniform cylinder of the same base diameter loaded under its own weight. 
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The line giving the proportions of such a critical cylinder, whose mechanical 
properties p, mass density, and E, elastic modulus, are appropriate for green 
pine, is shown in Fig. 5. The points represent the overall height and diameter 
5 ft from the base of record specimens of more than 500 species of trees 
found in the U.S.A. To make the comparison valid, one depends on the 
approximate constancy of the ratio E/p in green woods, even though both 

1.0 IIId 
0.01 0.1 I.0 IO 

Diameter (ml 

FIG. 5. Overall height vs. base diameter for 576 record trees representing nearly every 
species found in the United States. Data from the American Forestry Association’s Social 
Register of Big Trees. The argument is that trunk proportions are limited by elastic buckling 
criteria, since no points lie to the left of the solid line (from McMahon, 1973).! 

E and p may vary from species to species. Both the solid line representing 
the uniform cylinder and the broken line drawn by eye through the center 
of the points have slope 3 in the double-logarithmic plots. Thus eIastic 
similarity is approximately maintained in comparisons of the overall pro- 
portions of small and large trees, even across species boundaries. 

Figure 6 shows what happens when we make that same comparison of L 
against d within a single specimen, in this case the large white oak. We find 
for each path, as illustrated for the superposed data following 12 separate 
paths from a terminal twig to the trunk, that the points fall about a curved 
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I IO too IO00 
Diometcrd (mm) 

FIG. 6. Average length Lc vs. diameter d for 12 paths from a random twig to the base in 
the large white oak. The broken line is the best least-mean-squares fit for all possible 
twig-to-trunk paths in the entire tree, &+10 = 166 d@‘l, with i, = 217 mm. When the 
length to the virtual origin 1, is subtracted, the solid line shows LI vs. d. 

line in the log-log plot. This curved line becomes the straight broken line 
when Li+ Z, instead of Li is plotted against d, as expected. The computer 
algorithm chooses 1, on the basis of a least-mean-squares power-law fit, 
iterating l,, until the highest correlation coefficient is obtained. The data we 
start with thus yields three parameters when fitted to the power-law model: 
the intercept, the slope /I, and the distance to the virtual origin le. The results 
of this procedure taken as an average over every path from a first-order twig 
to the trunk in each of the specimens is shown in Table 3. The exponent B 
is found to be l-50+0*13 for the specimens studied, in reasonable agree- 
ment with the model postulating elastic similarity. This procedure proved to 
be a rather insensitive test of the power law, since the correlation coefficient 
passed through only a very shallow maximum in the five cases where a 
maximum could be found. For example, the large oak data showed a 
correlation coefficient r of O-967 for power /II = 1.50, while the maximum 
occurred for a choice of B = 1.41 where r was 0.969. 
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TABLE 3 

Predictions of the various similarity models with respect to taper exponent (fi) 
and natural frequency (f,), compared with experiments 

Models 
Depth taper 
exponent /3, 

d a Is 

Geometric similarity 
Elastic similarity 
Static stress similarity 
No taper 

Experiments 

:;t 
2 
0 

Frequency-length 
exponent y, 

f, = 2 
__-. 

-1.0 
-fi, 

2 

White pine 
Red oak 
Large white oak 
Small white oak 
Cherry 
AFA record specimens (Fig. 5) 
All poplars 
All maples, leaves on 
All maples, leaves off 
All larches 
All oaks, leaves on 
All oaks, leaves off 

~~~ --.__ 
1.37 
1.51 

166 i 

1.41 average - I.50 

1.50 
1.50 

-060 
-0.63 
-0.68 
-o.58 average = -0% 

-0.54 
-0*55 

The results of the studies of natural frequency f, versus extreme length 1,,,,, 
are shown in Fig. 7. As discussed in Appendix 3, we can expect approximately 
the same result tabulating f, against I,,,,, as we would have found if it had 
been possible to tabulate fn as a function of A. Least-mean-squares power-law 
fits to the data are summarized in Table 3. This is quite a sensitive test of 
the power-law rule, as one may see by studying the table. Geometric simil- 
arity would require a slope of - 1 in each of the frequency-length plots of 
Fig. 7, while constant stress similarity would require zero slope. Although the 
points in Fig. 7 show the inevitable scatter due to biological variation, both 
of these alternatives may be completely excluded. Again, the experiments 
clearly favor the elastically similar model over the alternatives, even though 
the average frequency-length exponent is -0.59 instead of the predicted 
-0.50. 

In Fig. 7(a) and (b), points representing paths along the main trunk are 
differentiated from points representing paths along lateral branches. The 
natural frequency of a branched segment including the main trunk is con- 
sistently higher than that of a lateral branch of equal length. 



60 Red maple 
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FIG. 7. Natural frequency vs. length for four species. (a) Poplar, (b) larch, (c) red maple, 
with and without leaves, (d) red and white oaks, with and without leaves. 

The natural frequency showed very little sensitivity to the plane in which 
bending vibrations were excited. For example, a white oak 1454 cm in height 
had an f, of 38 cycles/min for east-west bending and 40 cycleslmin for 
north-south bending. In most trees, f, in one plane was within 2% off, in 
the orthogonal plane. This is a demonstration of the mean radial symmetry 
of the crown shape and the trunk cross-sectional shape. 

An oak or maple bearing full summer leaves had a natural frequency 
between two and three times lower than the same tree after leaf fall. In 
Fig. 7(c) and (d), maples and oaks with and without leaves are contrasted. 
The large factor by which the leaves lower the natural frequency of a tree is 
probably due to the fact that their damping and mass (plus the added mass 
of the air they entrain) is concentrated near the tip, where the amplitude of 
oscillation is largest. The weight of the leaves themselves was found to be 
only 30.5% of the total weight of an 85 cm white oak. This fraction would 
be smaller in larger trees. 
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7. Summary and Conclusions 

Although the analysis of branching patterns has depended on the concept 
of integer ordering until the present time, it is clear that any scheme which 
does not keep track of the actual physical dimensions of a tree cannot 
investigate the principle of its mechanical design. We suggest here three 
doubly-tapered power-law models for branching structures and note that 
each implies a different design principle. 

In a detailed study of the morphometry of six complete specimens 
representing five species, we find further evidence supporting the conviction 
expressed before in the literature that the branching pattern within any 
species is approximately stationary. This means that the structure is self- 
similar with respect to the parameters we recorded, so that any patch of the 
structure is a model of the entire tree. Hence, one branching ratio and one 
diameter ratio is good for the whole tree, even the whole species. 

The morphometric studies also allowed us to determine which among the 
alternative power-law models provided the best description of real trees. Tn 
each of the specimens, the elastically similar model provided the best fit. 

In an independent set of experiments, clamped branches and whole trees 
of four species were excited in their lowest modes of vibration. The natural 
frequencies of these vibrations were found to vary approximately inversely 
as the square root of the greatest length of the branch, again in agreement 
with the elastically similar model. This result was found true both in trees 
without leaves and in maple and oak trees bearing their full summer leaves. 
The natural frequencies were different by about a factor of 2.4 between trees 
with and without leaves. 

Why should trees have decided to preserve elastic similarity in their 
branching structure? The question must stand as a subject for future research, 
but some speculation may not be out of place here. The overall proportions 
of the trunk must be robust enough to avoid buckling under its own weight, 
and this is surely the reason why none of the points in Fig. 5 fall to the left 
of the solid line. If the overall proportions of trees are set by genetic infor- 
mation, then perhaps this same information incidentally establishes the 
proportions of the limbs as well as the trunk. 

A more dynamic hypothesis suggests that every tree is continually sensing 
its own overall geometry, altering its proportions in such a way as to keep 
that geometry stationary during growth. Holland (1969) found that the shape 
of the crown is invariant of age in mallee Eucalyptus. If Fig. 8 is schematic 
of a growing tree, the only way the crown shape could be maintained the 
same between a small and a large tree would be to keep the chord angles 
01, 02 . * . the same. This requires that the tip deflection A divided by the 
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FIG. 8. Schematic of a growing tree loaded under its own weight. The limbs support the 
crown segments AI, Aa, etc. Unless the chord angles 01, &, . . . are maintained constant 
throughout growth, the crown segments might find themselves out of pIace in successively 
larger trees, and a species could not have a constant crown shape. Constancy of crown 
shape implies elastic similarity as the principle of mechanical design, as discussed in the 
text. 

limb length I be maintained constant, which is just the condition for elastic 
similarity. If this condition were not met, the crown segments A,, A, . . . 
supported by each branch might find themselves out of place in successively 
larger trees, e.g. dragging on the ground or squashed together at the apex. 

In conclusion, it now seems possible to state with some confidence that 
the principle of mechanical design within the tree species studied is the 
maintenance of elastic similarity. The mechanism which establishes this 
similarity is very much an open question, one whose ultimate answer promises 
subtle understanding of the nature of trees. 

The authors wish to acknowledge the technical assistance of D. Bogen, R. 
Lundberg, P. Brockenstedt, T. Fly, D. Margolis, and W. Taffel. The work was 
supported in part by a grant from the Clark Fund, Harvard University and the 
Division of Engineering and Applied Physics, Harvard University. 
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APPENDIX A 

1. Tapering to insure Elastic Similarity 

In Fig. 2(a) and (b), the width of the beam is b = k&, while its depth 
h = k,sa. Distance along the center line from the tip is s, although actual 
trees do not begin until s = IO because the structure does not extend down 
to infinitesimal size. The overall length from the built-in end to the virtual 
origin is Iz. In Fig. 2(c), the beam is shown leaving the trunk at arbitrary 
initial angle Boa When loaded under its own weight, the deflection of the tip 
is A. At any point s, the center line makes an angle 8 with the horizontal. 
The small quasi-rectangular slice shaded in Fig. 2(c) is drawn large in (d), 
illustrating how the local radius of curvature R results in stretching the fibers 
in the top part of the beam and compressing the fibers in the bottom. The 
strain E of fibers a distance y from the center line is 

E = [(R+y) de-R dO]/R d0 = y/R. (Al) 
The local stress D is EE, where E is the elastic modulus of the beam. Summing 
o dA over the cross-sectional area A gives the elastic restoring moment M: 

EI 
M=jsEybdy=;jy2bdy=X W 

A A 

where 

for the rectangular cross-section. Noticing that IRdOl = ds, we arrive at an 
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equation describing the shape of the center line, 

de M 
-&=--E 

(A3) 

where the minus sign accounts for the fact that 0 is decreasing as s increases. 
The elastic restoring moment must balance the moment M acting at a 

cross-section due to the weight of the beam to the right of the cross-section. 
Ifs is the distance from the end for the cross-section under consideration, 

an element of weight located a distance 2 from the end has a moment arm 
given by 

where 5 is a dummy variable of integration. The total moment is then given 
by the integral 

M = j,(Z) dZ jcos O(t) d5 (A4) 
0 

For the beam of rectangular cross-section under consideration 

w = pgbh = pgklk2sa+P 642) 

where pg is the weight per unit volume. Introducing the dimensionless 
lengths q = s/n, z = Z/n and 5 = t/L and substituting these along with 
equations (A4), (A5), and (A6) into (A3) gives: 

de _ 2-iza+b 
& - l]=+3fi0 

dz i cos e(l) dc 
z 

with the dimensionless coefficient 

048) 

Equation (A7) governs the shape of the beam loaded under its own weight. 
It is now in dimensionless form, and therefore the shapes O(q) of beams of a 
range of different overall lengths 3, could be plotted on the same figure. The 
shape would in general depend on A since H depends on L In the special case 
where fl = 4, His independent of 1 and all the shapes of e(q) fall on the same 
line. This means that the tip deflection A is always proportional to 1, what- 
ever value 1 may take. 



464 T. A. MCMAHON AND R. E. KRONAUER 

2. Tapering to Insure Similarity with Respect to Stress 

The objective is to select the taper in such a way that the maximum stress 
at any cross section is independent of location along the beam. This is an 
extremely difficult analytic problem unless some simplification is employed. 
We will assume here that the beam is sufficiently stiff that only relatively 
small deflections take place under its own weight. (Note that stiffness and 
strength are entirely separate mechanical properties and a beam may fracture 
before very large deflections are attained.) 

With small deflections, the inclination of the beam is a constant and may 
be taken outside of the integrals in equation (A4). Then using equation (A5) 
for w  the integration may be performed explicitly to give 

r+fl+z pgbhs2 

A4 = pgk1k2cose(~+j&(a+p+2) = (ol+~+1)(cT+p+2)cose (Ag) 

The maximum strain at any cross section follows from (Al) if we use h/2 
for y, and the maximum stress is E times this strain. Let Ok denote the 
maximum stress : 

Using equation (A2) to relate E/R to M, and then using equation (A6) for 
Z and (A9) for M we have 

6pg cos 0 
“’ = k;@+fl+l)(a+~+2) 

s2-lJ 

To make stress independent of s, p must be 2 so that the beam depth h is 
proportional to s’. Note that the maximum stress depends on a just as it 
depends on p, but a beam whose depth tapers according to h = k2s2 has the 
same maximum stress everywhere along its length whatever the choice for c(. 

APPENDIX B 

Natural Frequency of Power-law Beams 

This topic is one which offers formidable analytic challenge unless three 
important simplifications are made. The first is the usual one of small 
amplitude vibrations, which permits the problem to be reduced to one of 
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linear differential equations. The second assumption is that the configuration 
of the beam at rest under its own weight is essentially straight (i.e., the beam 
is stiff in the same sense as in Appendix A, part 2). The gravitational loads 
and the corresponding elastic restoring moments are in equilibrium in the 
resting state, and when we speak of loads and moments of the vibrating system 
they are in addition to the static ones. The third assumption will be that the 
beam is close enough to being horizontal that the gravitational interaction 
can be neglected. For a beam which is inclined, the gravitational forces 
interact with and consequently influence the vibration, but for horizontal 
beams there is no such interaction. 

From the theory of oscillations we know that the small unforced vibrations 
of a tapered beam can be decomposed into a sum of modal vibrations, where 
for each mode the structure vibrates in synchrony with a distribution of 
amplitude along its length known as the mode shape. The number of modes 
is infinite, their frequencies are generally distinct, and none of the mode 
shapes correspond to the static deflection under its own weight. Our interest 
here is with the lowest frequency (the “fundamental”). We denote by 6(s) 
the deflection of the beam from equilibrium at the extreme of its motion (the 
mode shape). Then the time varying deflection is given by 6(s) cos wt where 
w  is the natural frequency (radians/s) of the vibration. The instantaneous 
acceleration of any small segment of the beam during vibration, a, is 

a(s, t) = -w26(s) cos wt WI 

and the inertial reaction force per unit length is 

w’ = apbh = -pk,k,s”+Bw26(s) cos wt. 032) 

From this the vibrational bending moment can be calculated as in equation 
(A4) with cos 6’ set equal to unity 

M’ = j (s - Z)w’(Z) dZ. (B3) 
0 

Since the slope of the vibrational deflection is dd/ds, the elastic moment 
equation analogous to (A3) is 

(B4) 
d26 M’ 

cos wtds2 = -ET 

Combining equations (B2), (B3), (B4) and (A6) gives 

d2,j $(s-z)w’(z) a 12~0’ j (s -Z)Za+%(Z) dZ 
0 --- 

ds* - 
-=- 

EZ cos wt Ek*f+ s/1 035) 
2 
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As in Appendix A we introduce the dimensionless variables ‘1 = s/J,, 
2 = z/n, a* = s/a. 

d=P 12pw214-28~(r/-z)za+‘%*(z) dz 
d?2 = _ . ..__-___ 

Ek;q’+ 38 u36) 

When the beam is cut off at s = I, = &,, the lower limit of integration in 
the integral becomes 11~. The full problem, including boundary conditions, is: 

with 

and 

d36* d26* _- 037) 

Each of the terms of equation (B7) is dimensionless. The coefficient of the 
right-hand side is the same dimensionless constant in the case of all beams: 

12pfG --&‘4-2P) = c. 
2 

Solving for w2 

QW 

Thus in the several cases discussed in Appendix A, when: 

p = 0, no taper at all, w  cc 1/L2, 
b = 1, geometric similarity, 0 cc l/n, 
/I = 3, elastic similarity, 0 K I/L*, 
j = 2, static stress similarity, w  cc I?. 

We call attention here to the fact that, in our frequency-length experiments 
on any particular real tree, we were keeping I, the same between successive 
frequency measurements, whereas the development above requires us to 
keep q = I,lJ. the same. Nevertheless, it is possible to show that the constant 
C in equation (B8) is not very sensitive to the value of the dimensionless 
cutoff distance qO. Thus one may use the length to the cutoff point ImaX 
instead of the length to the virtual origin ,4 in the frequency-length 
correlations with only a small error. 


