
GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Uploaddatum: 31.07.2020
Uploadzeit: 15:32

Dies ist ein von FlexNow automatisch beim Upload generiertes Deckblatt. Es
dient dazu, die Arbeit automatisiert der Prüfungsakte zuordnen zu können.

This is a machine generated frontpage added by FlexNow.
Its purpose is to link your upload to your examination file.

Matrikelnummer: 11404043

ISSN 1612-6793

Master’s Thesis
submitted in partial fulfilment of the

requirements for the course “Applied Computer Science”

Deployment of Sensitivity Analysis on Plant Models
in GroIMP Utilizing R

Lukas Gürtler

Institute of Computer Science

Bachelor’s and Master’s Theses
of the Center for Computational Sciences

at the Georg-August-Universität Göttingen

31 July 2020

Georg-August-Universität Göttingen
Institute of Computer Science

Goldschmidtstraße 7
37077 Göttingen
Germany

T +49 (551) 39-172000
t +49 (551) 39-14403
B office@informatik.uni-goettingen.de
m www.informatik.uni-goettingen.de

First Supervisor: Prof. Dr. Winfried Kurth
Second Supervisor: Prof. Dr. Stephan Waack
Advisor: Aleksi Tavkhelidze
Advisor: Ernesto Rubio

mailto:office@informatik.uni-goettingen.de
www.informatik.uni-goettingen.de

I hereby declare that I have written this thesis independently without any help from others and
without the use of documents or aids other than those stated. I have mentioned all used sources
and cited them correctly according to established academic citation rules.

Göttingen, 31 July 2020

Abstract
Sensitivity analysis is a very important domain of computer plant models. This thesis deals with the
development and test of a plugin for the plant-modeling software GroIMP. The plugin supplements GroIMP
with the functionality of systematic sensitivity analysis of plant models by utilizing the statistical computing
software R. It is described how to connect the R language to the Java-based software GroIMP. Moreover,
the complete plugin structure is elaborated. Seven sensitivity analysis approaches are implemented (local
sensitivity analysis, Morris’s elementary effects screening, main and interaction effects on extreme values,
partial (rank) correlation coefficients, standardized (rank) regression coefficients, Sobol’s method, extended
Fourier amplitude sensitivity test). The mathematical base of each method is explained. The plugin is tested
with a beech tree and an assimilate production model considering various input parameters and outputs.
Finally the runtime, the memory consumption, the information quality, the runtime efficiency and the
memory efficiency are analyzed.

Contents

1 Introduction 11

2 Implementation Details 15
2.1 Connecting R to Java . 15

2.1.1 Class "RConnection" . 16
2.1.1.1 Fields and Properties . 16
2.1.1.2 Functions . 17
2.1.1.3 Constructor . 19

2.2 Simulation Identification . 19
2.2.1 Interface "Simulation" . 19

2.2.1.1 Functions . 19
2.3 Passing Model Parameters . 20

2.3.1 Class "NumberRef" . 20
2.3.1.1 Fields and Properties . 20
2.3.1.2 Functions . 21
2.3.1.3 Constructors . 21

2.4 Preparing a Plant Model for Sensitivity Analysis . 22
2.4.1 Preparation Steps . 22
2.4.2 Plant Model Preparation Example . 24

2.5 Sensitivity Analysis Methods . 27
2.5.1 Call Arguments . 27
2.5.2 Class "Sensitivity" . 28

2.5.2.1 Functions . 28
2.5.2.2 Using R for Sensitivity Analysis . 29

2.6 Plugin Structure . 31

3 Mathematical Foundation 32
3.1 Local Sensitivity Analysis . 32
3.2 Morris’s Elementary Effects Screening . 34

5

CONTENTS 6

3.3 Main And Interaction Effects On Extreme Values . 37
3.4 Partial (Rank) Correlation Coefficients (PCC/PRCC) and Standardized (Rank)

Regression Coefficients (SRC/SRRC) . 40
3.5 Sobol’s Method . 45
3.6 Extended Fourier Amplitude Sensitivity Test (EFAST) 47

4 Sensitivity Analysis of Plant Models 50
4.1 Beech Tree . 50

4.1.1 Local Sensitivity Analysis . 53
4.1.2 Morris’s Elementary Effects Screening . 54
4.1.3 Main And Interaction Effects On Extreme Values 56
4.1.4 Partial (Rank) Correlation Coefficients . 61
4.1.5 Standardized (Rank) Regression Coefficients 64
4.1.6 Sobol’s Method . 67
4.1.7 Extended Fourier Amplitude Sensitivity Test 70

4.2 Assimilate Production Model . 72
4.2.1 Local Sensitivity Analysis . 73
4.2.2 Morris’s Elementary Effects Screening . 74
4.2.3 Main And Interaction Effects On Extreme Values 76
4.2.4 Partial (Rank) Correlation Coefficients . 79
4.2.5 Standardized (Rank) Regression Coefficients 81
4.2.6 Sobol’s Method . 83
4.2.7 Extended Fourier Amplitude Sensitivity Test 85

5 Runtime and Memory Consumption 86

6 Summary and Outlook 99

Bibliography 106

A Source Code 110
A.1 RConnection.java . 110
A.2 Simulation.java . 120
A.3 NumberRef.java . 121
A.4 Sensitivity.java . 123

List of Figures

2.1 Illustration of the implementation of the simulation interface 22
2.2 Illustration of the transformation of a parameter . 23
2.3 Illustration of the usage modification of a parameter 23
2.4 Binary tree model . 24
2.5 Prepared binary tree model . 26
2.6 "Sensitivity" plugin structure . 31

4.1 Results of Morris’s elementary effects screening of the beech tree’s height 54
4.2 Results of Morris’s elementary effects screening of the beech tree’s carbon production 54
4.3 Results for main effects on extreme values of the beech tree’s height 56
4.4 Results for interaction effects on extreme values of the beech tree’s height 57
4.5 Results for main effects on extreme values of the beech tree’s carbon production . . 58
4.6 Results for interaction effects on extreme values of the beech tree’s carbon production 59
4.7 Results for the partial correlation coefficients of the beech tree’s height 61
4.8 Results for the partial rank correlation coefficients of the beech tree’s height 62
4.9 Results for the partial correlation coefficients of the beech tree’s carbon production 62
4.10 Results for the partial rank correlation coefficients of the beech tree’s carbon production 63
4.11 Results for the standardized regression coefficients of the beech tree’s height 64
4.12 Results for the standardized rank regression coefficients of the beech tree’s height . 65
4.13 Results for the standardized regression coefficients of the beech tree’s carbon

production . 65
4.14 Results for the standardized rank regression coefficients of the beech tree’s carbon

production . 66
4.15 Results of Sobol’s method for the beech tree’s height 67
4.16 Results of Sobol’s method for the beech tree’s carbon production 68
4.17 Results for the extended Fourier amplitude sensitivity test of the beech tree’s height 70
4.18 Results for the extended Fourier amplitude sensitivity test of the beech tree’s carbon

production . 70

7

LIST OF FIGURES 8

4.19 Results of Morris’s elementary effects screening for the net photosynthetic rate of
the assimilate production model . 74

4.20 Results for main effects on extreme values of the net photosynthetic rate of the
assimilate production model . 76

4.21 Results for interaction effects on extreme values of the net photosynthetic rate of the
assimilate production model . 77

4.22 Results for the partial correlation coefficients of the net photosynthetic rate of the
assimilate production model . 79

4.23 Results for the partial rank correlation coefficients of the net photosynthetic rate of
the assimilate production model . 80

4.24 Results for the standardized regression coefficients of the net photosynthetic rate of
the assimilate production model . 81

4.25 Results for the standardized rank regression coefficients of the net photosynthetic
rate of the assimilate production model . 82

4.26 Results of Sobol’s method for the net photosynthetic rate of the assimilate production
model . 83

4.27 Results for the extended Fourier amplitude sensitivity test of the net photosynthetic
rate of the assimilate production model . 85

5.1 Deviation of the runtime for PCC with 4 parameters 87
5.2 Comparison of the runtime for the sensitivity analysis methods 96
5.3 Comparison of the memory consumption for the sensitivity analysis methods . . . 96

List of Tables

1.1 Overview of the implemented methods . 14

4.1 Overview of the examined beech’s input parameters 51
4.2 Results for the local sensitivity analysis of the beech tree 53
4.3 Overview of the examined assimilate production model input parameters 72
4.4 Results for the local sensitivity analysis of the net photosynthetic rate of the

assimilate production model . 73

5.1 Runtime and memory consumption measurements 88
5.2 Runtime and memory consumption of the local sensitivity analysis 89
5.3 Runtime and memory consumption of Morris’s elementary effects screening 90
5.4 Runtime and memory consumption of the main and interaction effects on extreme

values . 91
5.5 Runtime and memory consumption of the partial (rank) correlation coefficients

(PCC/PRCC) . 92
5.6 Runtime and memory consumption of the standardized (rank) regression

coefficients (SRC/SRRC) . 93
5.7 Runtime and memory consumption of Sobol’s method 94
5.8 Runtime and memory consumption of the extended Fourier amplitude sensitivity

test (EFAST) . 95
5.9 Information quality assessment of the sensitivity analysis methods 97

9

List of Abbreviations

SA sensitivity analysis

LSA local sensitivity analysis

GSA global sensitivity analysis

OAT once-at-time

GroIMP growth grammar related interactive modeling platform

RGG relational growth grammar

DoE design of experiments

PCC partial correlation coefficients

PRCC partial rank correlation coefficients

SRC standardized regression coefficients

SRRC standardized rank regression coefficients

CC Pearson correlation coefficient

FAST Fourier amplitude sensitivity test

EFAST extended Fourier amplitude sensitivity test

PPFD photosynthetically active photon flux density

PAR photosynthetically active radiation

10

Chapter 1

Introduction

The question of input to output relationship is the leading subject of simulation models in all
scientific domains. A common mathematical instrument to accomplish this problem setting is
the so-called process of sensitivity analysis (SA). It can be considered as the study of how model
input parameters influence a particular interest quantity as the model or simulation output [1].
The amount of influence of input variables on a certain model output is thus called parameter
sensitivity [2], which is a measure resulting from an SA method. Therefore SA estimates how
sensitive designated outputs are to fluctuations within the input parameter space [3]. Another
definition that can be found in literature [4] [5] is the "study of how uncertainty in the model
output can be attributed to different sources of uncertainty in the model input". Because of that,
the method of SA is also referred to by the term "What-if-analysis" [6]. SA is used in a wide variety
of domains including economics, geography, biology, physics, human medicine, engineering and
ecology. It is auxiliary to detect connections or correlations between model inputs, predictions and
observations [7]. SA can deliver important information in order to reveal model complexity or for
model understanding. This particularly is the case for plant models [8], because they are meant to
represent complex biological processes with various organs (functional units) interacting. In order
to get a rough understanding of the field of SA, questions of interest could be [9] [3]:

• What level of validity does the model possess?

• How much will the outcome change for little parameter modifications?

• Can parameters be omitted in order to simplify the model?

• What is the most influential parameter? Is there a linear or non-linear relationship?

• Do parameters interact?

• Are the initial assumptions valid?

• Can reasonable results be obtained for all parameter combinations?

11

CHAPTER 1. INTRODUCTION 12

Considering the questions above, SA has a far reaching scope of objectives. The following should
give an overview [7] [10] [11] [12] of the most common use cases of SA: One main issue is the test
of model robustness. This outcome focuses on how the model behaves when the input parameter
setting is prone to high uncertainties. SA can help understanding the relationship between input
and output. This is especially important in order to reveal parameter interactions. Moreover it can
deliver a significant contribution for the model understanding by unfolding primarily hidden
effects. Thus, model errors can also be derived when obtaining unexpected or empiricially wrong
output. Another very important intent of SA is the ranking of parameters by their impact
(sensitivity measure). The rank information for each parameter can be very useful for a later
model simplification. However, that does not mean that always non-influential parameters are
dropped. It can also lead to an omission of a highly sensitve parameter in order to decrease the
output variance and thus increase the model robustness. In principle, SA can be applied for the
purpose of validity and accuracy checking of the model. This is in particular the case when
looking at the outcome of global SA methods (definition in next paragraph). Moreover one main
objective of SA is given by obtaining the input to output relation in a functional manner. This can
be beneficial in order to identify critical values, thresholds or break-even points [7] in the input
space respecting the desired output measure. Hereby calibration of the initial parameter
configuration can be accomplished [1].

For the subject of SA, many mathematical approaches that address the different objectives exist. In
general, it is distinguished between local (LSA) and global SA (GSA) [4]. For nearly all SA
methods it holds true that a set of parameter combinations is created and the simulation is
executed whilst gathering the specific output value for each combination. Afterwards, the input to
output value data mapping is used for the concrete method’s further calculations. The difference
between local and global SA is that in local SA the initial input parameter configuration is only
examined within a percentage interval (for example 90% to 110%), whereas in global SA the input
parameters are varied over the whole possible input space. A point from the input space is given
by a vector of parameter realizations where each entry is within the range of the lower and upper
bound (minimum and maximum value) for the respective parameter. In practice, the most often
used SA methods belong to the so-called OAT class [13]. OAT stands for "once-at-time" and means
that only one parameter is varied at a time step whilst all others are kept constant. The reason can
be found in maintaining simplicity, since models potentially possess many parameters and the
systematic variation of multiple parameters simultaneously can be challenging because of the
exponential increase in the number of samples (curse of dimensionality). However, OAT
approaches cannot give full insight into interaction effects [4].

CHAPTER 1. INTRODUCTION 13

Input parameters in SA that govern some output generating simulation generally have no fixed
shape and thus can be, for example, any mathematical objects, like matrices, vectors or functions.
However, in this work it is by definition the case that an arbitrary input or output parameter
always refers to a single, one-dimensional, numeric-valued variable. Hence, each SA method will
rely on the same parameter shape such that comparability is guaranteed.

When considering computer simulation models it is comprehensible to expect input to output
relations within the source code. This knowledge then could be used by incorporating it in the SA.
Nevertheless, such connections should be initially revealed by SA. This is particularly important
for plant models as they often possess processes that are not fully understood. Because of that, it is
determined that when referring to SA the input to output transition is considered as a black box
transformation. Hence, no a priori knowledge about the transformation process is assumed.

An important application field where SA can deliver insightful results is the domain of plant
modeling. GroIMP (Growth Grammar related Interactive Modeling Platform) is a 3D plant
modeling software platform, which processes code written in the language XL. XL is a superset of
Java and implements the so-called relational growth grammars. For more information see [14] [15].
The software R [16] is a very sophisticated statistical computing platform coming with its own
programming language. It supplies various packages for nearly all mathematical problem settings
and has thus become an indispensable analysis tool for many scientific domains.

The current paper deals with the deployment, implementation and testing of SA tools for GroIMP
by the utilization of the R language. Since GroIMP is composed of plugins, where each one
constitutes a part of the provided functionality, a plugin that extends GroIMP with SA functions
has been developed. The topic of using R in order to conduct SA has been treated by the authors
of [17]. In that paper SA was not applied to plant models, but to agent-based models that target to
model real-world phenomena. Nevertheless, in the current paper the procedures and methods
described in [17] have been used as leads for the deployment of SA in GroIMP. An overview of the
SA methods that have been implemented and tested can be found in table 1.1.

CHAPTER 1. INTRODUCTION 14

Method LSA GSA OAT

Local Sensitivity Analysis X X

Morris’s Elementary Effects Screening X X

Main And Interaction Effects On Extreme Values X X

Partial (Rank) Correlation Coefficients X

Standardized (Rank) Regression Coefficients X

Sobol’s Method X

Extended Fourier Amplitude Sensitivity Test X

Table 1.1: Overview of the implemented methods
LSA = local sensitivity analysis approach
GSA = global sensitivity analysis approach
OAT = once-at-time approach

The document structure reveals as follows:

• In chapter 1 the domain of sensitivity analysis is examined. Besides, the motivation and
topic of the current paper are described.

• In chapter 2 details about the implementation are given. This includes how the process
communication has been realized and moreover, which specific classes and interfaces are
needed for the plugin. Furthermore, it is described what modifications are necessary in order
to prepare a certain plant model - implemented in GroIMP - for SA.

• In chapter 3 the mathematical foundation for each method (see table 1.1) is presented.

• In chapter 4 the developed plugin is tested by applying each implemented method to two
plant models, considering different outputs.

• In chapter 5 the SA methods are compared, regarding runtime, memory consumption and
the information quality.

• In chapter 6 the results are summarized and an outlook for future developments is given.

Chapter 2

Implementation Details

In this chapter different aspects of the plugin implementation are described. At first the problems
one is facing using the Java language for the outcome of SA are explained. Furthermore, the results
for the task to connect the R language to Java are depicted. Additionally, the plugin structure
is revealed including the description of the helper classes and interfaces necessary. Moreover it
is elaborated how an arbitrary plant model must be modified in order to be able to perform an
SA method. Since in GroIMP every plugin - which is a contribution to the functionality scope -
is identified by its unique name, and because of the fact that there is no SA plugin contained at
the moment, it was chosen to patently name the developed plugin "Sensitivity". In the following
paragraphs only few source code parts are shown, but references to code lines. Thus, the complete
source code can be found in the appendix (A.1, A.2, A.3, A.4).

2.1 Connecting R to Java

The fact that GroIMP is written in Java makes it platform independent. For the version 1.5 at least
Java 7 is required in order to execute the software. For later versions GroIMP has also been
adapted to Java 8. This is in particular advantageous because there are many proprietary and
non-proprietary Java plugins available that intend to deploy the R language in the Java
environment, and often those plugins only work for Java versions higher than 8. Those are for
example Renjin, FastR, JRI, Rserve or rJava. However, the existing solutions come with many
disadvantages that make the use of the plugins in association with GroIMP unattractive. It is for
instance the case, that the plugin Renjin does not support all R packages available. This fact is
especially unfavorable because packages usually possess dependencies. Hence, one missing
package in Renjin can render a bunch of important packages useless. Moreover it holds true that
new released R packages need to be translated by the Renjin developer team. Since often there is
only a small user community for special packages, they will potentially be neglected for

15

CHAPTER 2. IMPLEMENTATION DETAILS 16

incorporation. In the majority of cases the plugins that connect R to Java are not platform
independent. Nevertheless, concerning the platform independence of GroIMP, this property
should also apply to its plugins. For some only a Windows-based implementation is available. For
others, in order to make a plugin work for a certain operating system, heavy user work for
customization is needed, as often platform dependent plugin adaptation is mandatory. On
account of these disadvantage it was decided not to use an existing Java plugin at all.

Another approach to consider - apart from using an existing plugin - is the connection of R and
Java via a server-client application. An implementation of R then would run on a server. The
concrete Java application would use an HTTP-connection in order to send and execute R
commands and also to receive the response and to parse the output. However, considering this
strategy, one faces huge unreliability issues. The plugin would heavily depend on a flawlessly
working server. Furthermore, it would hinge on the availability of an internet connection. Because
of these major disadvantages, this approach will not be taken into consideration since it cannot
fulfill the reliability demands for GroIMP plugins that should also function offline.

Because of the described existing approaches and their drawbacks it was chosen to implement a
class that encapsulates the connection to R. A prerequisite for this approach is an existing R
installation including the necessary packages (for example the "sensitivity" package for SA). For
every operating system an R implementation contains an executable that handles byte streams for
process input and output. Thus, the data exchange is done by process communication techniques.
Hence, executing an R command is carried out by writing to the process’s standard input stream.
In order to feed the output back to Java datatypes, parsing of the read lines from the standard
output stream is necessary. In the following, the structure of the Java class "RConnection" is
described. This will also include all declared fields as well as the public and private functions.
Since a line by line walk through the code is not very insightful, the main objectives in the code
will be sequentially processed.

2.1.1 Class "RConnection"

2.1.1.1 Fields and Properties

• private BufferedWriter w (line 57) — This is the global variable of the buffered writer for
the R process’s standard output stream.

• private BufferedReader r (line 58) — This is the global variable of the buffered reader for
the R process’s standard input stream. One should recall that input and output stream refer
to the identical single stream in a process. As an example, a classical terminal console should
be considered.

CHAPTER 2. IMPLEMENTATION DETAILS 17

• private boolean _success (line 61) — This variable specifies if a connection could successfully
be established.

• public boolean success() (line 63-65) — This is a getter for the variable _success.

2.1.1.2 Functions

• private boolean isOSWindows() (line 188-190) — Checks if operating system is Windows.

• private boolean isOSLinux() (line 195-197) — Checks if operating system is Linux.

• private boolean isOSMac() (line 202-204) — Checks if operating system is Mac.

• private String get_R_executable() (line 233-378) — This function returns the path of the R
executable, which is depending of the current operating system (OS). When the function
was not successful, and thus no R installation could be found, null is returned. In case that
the OS is Windows, the R executable cannot be obtained by a system environment variable.
Because of that, for the initial use of the sensitivity plugin the R installation folder must be
determined by the user. When this is the case, a dialog pops up and the user is asked to
navigate to that folder. If the search for the R executable was successful, the path will be
stored in a setting file. In case it was not found, an error message will indicate this failure.
For further plugin usage the saved path is recovered from the settings file. In case that the
OS is Linux, the R executable is given by a system environment variable. However, if R is
not installed and the executable does not exist, a dialog will pop up and indicate what exact
steps need to be taken in order to install R using the terminal. Inside this dialog, buttons for
copying the necessary commands to the clipboard - the user has to execute in order to install
R - represent a convenience offer. If the OS Mac is detected, the R executable is assumed to
be located at the default location. If that is not the case, an error message will indicate the
missing R installation. Since R versions are only provided for the three mentioned OS, if none
of them could be identified, an error message will tell the user that the OS is not supported.

• private boolean init_R_connection(String rpath) (line 81-109) — In this function a
connection to an R process is established. The argument rpath must be the result of the
function get_R_executable(). Initially, a process that redirects its output stream must be
created and started. Since the stream writers and readers are globally defined in order to be
used in later functions, they are obtained and assigned. For the case that no error exception
occurs, true is returned, otherwise the error message is printed on the debug and GroIMP
console and false is returned.

• public String[] eval(String expression) (line 117-153) — This function represents the
communication interface to R. It is used to state or evaluate any arbitrary R expression. The
statement that is meant to be executed is specified by the argument expression. The return
value is the response that comes from the R process. Since it is often the case that a

CHAPTER 2. IMPLEMENTATION DETAILS 18

multiple-lined output is returned, it was chosen to store each output line in a separate entry
in a string array. That is why the function returns a string array that can be used for later
processing, for example for the purpose of number or matrix parsing. Due to the fact that
reading from a stream is potentially a thread-blocking command, it is very important that
the number of reads does not exceed the number of lines that are in the present buffer.
Hence, in order to detect the end of any output, a special token is used for the output end
identification. Because of that, the expression that should be executed is written to the
process’s standard input followed by the special token. In addition, it is very important to
reconsider the fact that the standard output and input stream of a process refer to the same
single stream. On account of this fact, every line that is written to the process’s input stream
simultaneously appears in the output stream. Since the return value of the function eval()
should not contain the expression itself, it is skipped by reading from the stream exactly the
number of times as there are line breaks in the expression. This guarantees the behavior
desired. Afterwards, every output line is read from the stream and stored until the special
end token is detected. Finally, the resulting array that contains the command response from
R can be returned. In case of any error occurrence, a message is printed on the debug and
GroIMP console and null is returned.

• private boolean check_R_Packages() (line 385-435) — For the plugin it is mandatory that not
only an R installation is present, but also specific R packages. Such packages are "sensitivity"
[18], "FrF2" [19], "tgp" [20], "MASS" [21], "gridExtra" [22], "latex2exp" [23], "lattice" [24] and
"directlabels" [25]. Therefore, the function check_R_packages() determines whether all required
packages are installed. For that outcome with the help of the eval() function it is examined
if a package is missing. If no missing package was detected, they will be loaded via the
library command from R, and success for the package check is indicated by the return of
the value true. Additionally, in case of positive check the R helper function flat is defined.
This R function is relevant to every SA function as a parsing helper that sequentially outputs
every desired output matrix entry. This is in particular needed to obtain the parameter
combinations. For detected missing packages, an error message informs the user about
the packages that need to be installed in order to work with the SA plugin. Hence, false is
returned.

• public void X11() (line 158-172) — In order to open a plot window, R offers different functions
for the different operating systems. The wrapper function X11() calls the appropriate one,
depending on the current system.

• public void waitForClose() (line 177-183) — For the purpose of keeping plot windows,
created with the command X11() open and reactive, the function waitForClose() needs to be
used. When the window is closed by the user, the R process is automatically terminated and
the connection ends.

CHAPTER 2. IMPLEMENTATION DETAILS 19

2.1.1.3 Constructor

• public RConnection() (line 70-74) — The constructor of the class "RConnection" calls the
functions get_R_executable(), init_R_connection() and check_R_packages(). Only if all three calls
have been successful, a valid connection to an R process can be established. Because of that,
the value of the variable _success, which indicates the connection state, is set accordingly.
When an instance of the type RConnection is created, the evaluation function eval() represents
the primarily used function in order to execute R commands and to receive their response.

2.2 Simulation Identification

SA requires that the same simulation is repeated again and again. However, each simulation
run is performed with a different parameter combination. In GroIMP the simulation process can
incorporate many functions as well as derivation rules. Nevertheless, it is the case for GroIMP
that a certain, identifiable function triggers the start of a simulation run. Since the developed
SA methods are considered to be generic and not fixed to a concrete model, there is a need to
be able to hand over a function as a variable argument. An SA function then would be called
with an argument that represents the dedicated simulation. Unfortunately, Java does not offer the
possibility to pass functions directly as object references. The solution that remains is the use of a
simulation interface. It is very important to recall that in GroIMP every RGG-file itself represents a
Java class. The file’s name is simultaneously the Java class name. Its superclass is the RGG-class.
The solution to the problem described ahead is that the class in the RGG-file needs to implement a
certain interface which contains the dummy functions needed to run the simulation and to obtain
the simulation output. Thus, the interface "Simulation" was developed. The key point is, that when
calling an SA function an instance of "Simulation" must be passed over. When an SA is done in the
class itself that implements the "Simulation" interface, it is only needed that the instance is passed
to the SA method by the this statement.

2.2.1 Interface "Simulation"

2.2.1.1 Functions

• public void run() (line 29) — This is the dummy function in order to start the simulation. It
needs to be be implemented from the class where the simulation is located. It is crucial that
in this function before or after the simulation terminates or is started again, it is reset to its
initial state. This guarantees that always comparable simulation runs constitute the base of
SA.

CHAPTER 2. IMPLEMENTATION DETAILS 20

• public double getOutput() (line 31) — This dummy function represents the output
measurement that is performed after every simulation run. The outputs are thus gathered in
every SA method by the call of this function. It was determined that the output type is
double, which coincides with real-valued numbers and covers all other integer-based number
datatypes. Performing SA, the user is obligated to write the output generating function
himself, since there are arbitrary readings as potential values of sensitivity interest.
Nevertheless for complex readings, for example structure-aggregated values, GroIMP and
XL possess the very advantageous tool of graph queries in order to obtain them.

• public String outputName() (line 33) — This function is meant to represent the name of the
output that is generated by the function getOutput(). In particular, the function is necessary
for the correct labeling of the plot resulting from an SA method. Since it is internally used to
assign data vectors, no spaces in this string are allowed.

2.3 Passing Model Parameters

SA is the process of systematically varying the model parameters and observing the output.
That means when calling an SA method, the model parameters whose sensitivity is meant to be
examined respecting a certain output, must be handed over as arguments. However, it is the case
that the model parameters are always given by primitive datatypes, which are by default passed
by value. Java does not offer any other possibility to pass primitive datatypes as reference than
the so-called process of boxing and unboxing. To hand over the parameters as references is crucial
because they are supposed to be systematically varied. If passed by value, a modification in the
code of an SA function would not have any impact on a global variable at all. In Java all primitive
numerical value types have a reference-typed clone. This is for example the case for the type double,
where the reference clone is Double. Nevertheless, it was decided to implement an own generic
class for the boxing of number types, which delivers additional functionality compared to the
existing Java approaches. This class is called "NumberRef".

2.3.1 Class "NumberRef"

2.3.1.1 Fields and Properties

• private double value (line 31) — This field represents the number value for the concrete class
instance. The type double was chosen because it can hold any number for example double,
float, int and long.

• private String name (line 32) — For SA it is important to uniquely identify every parameter.
Furthermore, every parameter needs a name for later plotting purposes (labeling), since it

CHAPTER 2. IMPLEMENTATION DETAILS 21

is desired that the parameter can possess another name than the variable itself. Due to that
reason, the field name stores the parameter name.

• public void set(int value) (line 67-69) — This is the setter for the field value (int version).

• public void set(long value) (line 71-73) — This is the setter for the field value (long version).

• public void set(float value) (line 75-77) — This is the setter for the field value (float version).

• public void set(double value) (line 79-81) — This is the setter for the field value (double
version).

• public String name() (line 83-85) — This is the getter for the field name.

• public void setName(String name) (line 87-89) — This is the setter for the field name.

2.3.1.2 Functions

• public int getInt() (line 51-53) — This is the getter for the field value type-casted to int.

• public long getLong() (line 55-57) — This is the getter for the field value type-casted to long.

• public float getFlt() (line 59-61) — This is the getter for the field value type-casted to float.

• public double getDbl() (line 63-65) — This is the getter for the field value type-casted to
double.

2.3.1.3 Constructors

There is a constructor for every number type. It mandatory to always specify a value and the name
of the model parameter.

• public NumberRef(int value, String name) (line 34-36) — The constructor creates a new
instance of the class NumberRef, when the type is int.

• public NumberRef(long value, String name) (line 38-40) — The constructor creates a new
instance of the class NumberRef, when the type is long.

• public NumberRef(float value, String name) (line 42-44) — The constructor creates a new
instance of the class NumberRef, when the type is float.

• public NumberRef(double value, String name) (line 46-49) — The constructor creates a
new instance of the class NumberRef, when the type is double.

CHAPTER 2. IMPLEMENTATION DETAILS 22

2.4 Preparing a Plant Model for Sensitivity Analysis

In the previous two sections it was described how to overcome the Java drawbacks considering
parameter and function passing. This is the reason why a plant model needs to be adapted in order
to be able to perform an SA method. In the following, the steps that are necessary to prepare a
plant model are described. Afterwards, as an example, the binary tree from the GroIMP example
section is used to show the adaptations.

2.4.1 Preparation Steps

1. Implementing the Simulation Interface — Since every RGG-file constitutes a Java class, it
might be the case that one cannot find the class definition statement within the file itself.
Because of that, in order to tell the class to implement the interface the code has to be
reorganized. Therefore, after all import statements have been made, the code has to be
wrapped by the class name "Main", which is nevertheless overwritten by the file name of the
RGG-file. Hence, the class is not called "Main" as the code might suggest, but this token is
relevant for the XL compiler. In addition, to correctly implement the interface, the embraced
functions need to be implemented according to the statements made in the previous section.
The framework is given by figure 2.1.

[...] //import statements

public class Main extends RGG implements Simulation {

[...] //source code

@Override

public void run() {

[...]

}

@Override

public double getOutput() {

[...]

}

@Override

public String outputName() {

[...]

}

}

Figure 2.1: Illustration of the implementation of the simulation interface

CHAPTER 2. IMPLEMENTATION DETAILS 23

2. Replacing the model parameter value variables with a NumberRef version — In order to
be able to systematically vary the model parameters from within the code of any SA method,
it is necessary to replace the value type model parameters with a wrapper version as an
instance of the class NumberRef. The parameters that are designated for SA then can be passed
over to the concrete SA method as a call argument. Since value-typed number variables
have been replaced by reference-typed versions, the parameters cannot be directly used any
longer in the simulation code, for example for the internal calculations. Because of that, on
the instances of the new variables the appropriate getter and setter functions must be called
on every single occurrence in the simulation code. The transformations are illustratively
given by the code sample in the figures 2.2 and 2.3.

double model_parameter_1 = 5.78;

⇓
NumberRef model_parameter_1 = new NumberRef(5.78, "model_parameter_1");

Figure 2.2: Illustration of the transformation of a parameter

void simulation() {

[...]

double volume = 3.14 * Math.pow(r, 2) * model_parameter_1;

model_parameter_1 += 1.0;

[...]

}

⇓

void simulation() {

[...]

double volume = 3.14 * Math.pow(r, 2) * model_parameter_1.getDbl();

model_parameter_1.set(model_parameter_1.getDbl() + 1.0);

[...]

}

Figure 2.3: Illustration of the usage modification of a parameter

CHAPTER 2. IMPLEMENTATION DETAILS 24

2.4.2 Plant Model Preparation Example

In this section it is exemplarily shown how to prepare a plant model for SA using the binary tree
from the GroIMP example section. This is done by applying the steps described in the section
before. In the transformed plant model the implemented output generating function getOutput()
will measure the maximum extent of the plant organs in the xy-plane. This will be done with
the help of a special XL rule type namely the so-called execution rule or update rule. Moreover, it
is determined that a simulation run is given by applying the derivation rule derive() ten times.
Since the concrete plugin’s SA functions were not introduced yet, the SA function that represents
a certain method is plainly given by the dummy function SA_method(), which is a deputy for all
methods offered. In order to start the SA process, the function sensitivity_analysis() has to be called.
The available SA functions as well as their call argument lists will be explained in the next chapter.
However, the example makes clear how to correctly pass the arguments. In figure 2.4 the original
code from the binary tree can be found. Figure 2.5 shows the code of the prepared model.

module A(float l, float w);

module B(float l, float w);

const float r1 = 0.9F;

const float r2 = 0.8F;

const float a1 = 35;

const float a2 = 35;

const float wr = 0.707F;

protected void init()

[

Axiom ==> A(1, 0.1F);

]

public void derive()

[

A(l,w) ==> F(l,w) [RL(a1) B(l*r1, w*wr)]

RH(180) [RL(a2) B(l*r2, w*wr)];

B(l,w) ==> F(l,w) [RU(-a1) AdjustLU B(l*r1, w*wr)]

[RU(a2) AdjustLU B(l*r2, w*wr)];

]

Figure 2.4: Binary tree model

CHAPTER 2. IMPLEMENTATION DETAILS 25

import de.grogra.sensitivity.*;

public class Main extends RGG implements Simulation {

module A(float l, float w);

module B(float l, float w);

NumberRef r1 = new NumberRef(0.9F,"r1");

NumberRef r2 = new NumberRef(0.8F,"r2");

NumberRef a1 = new NumberRef(35.0F,"a1");

NumberRef a2 = new NumberRef(35.0F,"a2");

NumberRef wr = new NumberRef(0.707F,"wr");

protected void init()

[

Axiom ==> A(1, 0.1F);

]

public void derive()

[

A(l,w) ==> F(l,w) [RL(a1.getFlt()) B(l*r1.getFlt(), w*wr.getFlt())]

RH(180) [RL(a2.getFlt()) B(l*r2.getFlt(), w*wr.getFlt())];

B(l,w) ==> F(l,w) [RU(-a1.getFlt()) AdjustLU B(l*r1.getFlt(), w*wr.getFlt())

] [RU(a2.getFlt()) AdjustLU B(l*r2.getFlt(), w*wr.getFlt())];

]

@Override

public void run() {

reset();

for (apply (10)) derive();

}

@Override

public double getOutput() {

NumberRef output = new NumberRef(Double.MIN_VALUE, "");

xy_extent_query(output);

return output.getDbl();

}

@Override

public String outputName() {

return "XY-EXTENT";

}

private void xy_extent_query(NumberRef output) [

x:Node ::> {

CHAPTER 2. IMPLEMENTATION DETAILS 26

Point3d p = location(x);

output.set(Math.max(output.getDbl(), Math.sqrt(p.x*p.x + p.y*p.y)))

;

}

]

public void sensitivity_analysis() {

/*
Call arguments of the SA function:

1 : array of the model parameters to examine

2 : array of the parameters’ lower bounds (minimum values)

3 : array of the parameters’ upper bounds (maximum values)

4 : instance of the simulation to run (implementation of the "Simulation"

interface)

*/

Sensitivity.SA_method(new NumberRef[] {r1,r2,a1,a2,wr},

new double[] {0.5,0.5,45.0,45.0,0.0},

new double[] {1.0,1.0,135.0,135.0,2.0},

this);

}

}

Figure 2.5: Prepared binary tree model

CHAPTER 2. IMPLEMENTATION DETAILS 27

2.5 Sensitivity Analysis Methods

The class that contains all SA methods is called "Sensitivity". It furthermore comprises some helper
functions which are nevertheless inaccessible for the user since they are declared as private. It
was decided to make every single SA function static. As a consequence, the functions can be
directly accessed without creating an instance of the class. To avoid confusion it was also decided
to mark the "Sensitivity" class as abstract, so that it is already impossible to instantiate an object
from it. It should be reconsidered that this class can only be used on plant models that have
been prepared as prescribed according to the procedure described in the previous section. In
the following, every function call argument will be elaborated. It should be noted that function
signature is equal for every single function, except for the method local_sensitivity_analysis(...).
To avoid misunderstanding the scope of each argument is stated subsequently. After that, the
functions - where every one is an implementation of an SA method from table 1.1 - contained in
the class will be given. All implemented SA functions possess the return type void, hence nothing
is returned. However, the output from each one is given by the graphical representation (tables or
graphs) of the methods’ outcomes (sensitivity measures).

2.5.1 Call Arguments

• NumberRef[] parameters (scope: all) — This array must contain all model parameters whose
sensitivity is meant to be studied. In case of a high number of parameters, there is the
strong endorsement that this array is only a subset of all available model parameters. It
is recommend that the complete set of model parameters is only processed with local SA
and with Morris’s screening method. The reason is given by the fact that the other methods
are much more complex compared to the two mentioned ones. Furthermore, local SA and
Morris’s screening are used to initially determine the potentially influential parameters that
are worth to be examined further. This leads to a reduction in the number of examined
parameters and thus a reduction of computational complexity.

• double min (scope: local_sensitivity_analysis) — This parameter specifies the relative minimum
test value for the examination range. It must be recalled that local SA only examines a
bounded percentage interval around the initial parameter value. The expected value range
of min is given by {0.0 ≤ min ≤ 1.0} ⊆ R.

• double max (scope: local_sensitivity_analysis) — This parameter specifies the relative
maximum test value for the examination range. The expected value range of max is given by
{1.0 ≤ max <∞} ⊆ R.

• double[] min_var (scope: all \{local_sensitivity_analysis}) — Global SA methods examine the
complete definition ranges of model parameters. Every entry in the array min_var coincides

CHAPTER 2. IMPLEMENTATION DETAILS 28

with the lower bound (minimum value) of each parameter that is meant to be examined and
that is given by the specific entry in the array parameters. It must be stated that these bounds
may deviate on account of the parameter selection and the desired output measurement.

• double[] max_var (scope: all \{local_sensitivity_analysis}) — This array is defined equivalently
to min_var, except that it is defined for the parameters’ upper bounds (maximum values).

• Simulation simulation (scope: all) — This argument expects an instance of a class that has
implemented the "Simulation" interface. The instance variable is then used to identify the
simulation run function that will be executed for every parameter combination coming from
the prevailing SA function. Furthermore, the interface implementation also is utilized to
perform the output measurement after every simulation run as well as to obtain the output’s
name. It should again be mentioned that, when the SA method is called within the class that
implements the "Simulation" interface, the argument that has to be passed is simply given by
the identifier this.

2.5.2 Class "Sensitivity"

2.5.2.1 Functions

• public static void local_sensitivity_analysis(NumberRef[] parameters, double min,
double max, Simulation simulation) (line 41-92) — This function performs the local SA
method.

• public static void morris_elementary_effects_screening(NumberRef[] parameters,
double[] min_var, double[] max_var, Simulation simulation) (line 103-155) — This
function performs the method of Morris’s elementary effects screening. Since all following
SA functions possess the same signature as this function, it will thus be indicated by (. . .).

• public static void main_and_interaction_effects_on_extreme_values(. . .) (line 166-230) —
This function calculates the main and interaction effects based on an approach by Kathrin
Happe. The method is applied to the extreme values of the parameters, hence 2n parameter
combinations are tested, when n is the number of tested parameters.

• public static void partial_correlation_coefficients(. . .) (line 241-296) — This function
calculates the partial correlation coefficients and also their rank version.

• public static void standardized_regression_coefficients(. . .) (line 307-357) — This function
calculates the standardized regression coefficients. Additionally, these coefficients are also
given in their rank version.

• public static void sobol(. . .) (line 367-420) — This function performs Sobol’s method, which
is attributed to the variance-based SA methods. This results in the calculation of the
parameters’ first-order and total-effect indices.

CHAPTER 2. IMPLEMENTATION DETAILS 29

• public static void extended_fourier_amplitude_sensitivity_test(. . .) (line 431-480) — This
function calculates first-order and total-effect indices of the parameters like Sobol’s method.
Nevertheless, the calculation base is different and although it is belonging to the variance-
based SA methods, the comparability of these indices is only given within the domain of the
concrete method output itself. The method’s foundation is based on variance decomposition
using Fourier series expansion.

2.5.2.2 Using R for Sensitivity Analysis

The Java functions described in the previous section, where each one implements an SA method,
make use of the developed framework that was described in sections 2.1.1, 2.2.1 and 2.3.1. In the
following, it is elaborated how Sobol’s method was implemented to show in an exemplary way
how to employ the R language whilst using the developed Java helper constructs. The
fundamental train of thought also applies for all other SA functions. Because of that and due to the
fact that handling the code of all SA methods is not very insightful it was decided to only process
the code of Sobol’s method.

The first task in order to be able to execute R commands is to establish a connection to an R process.
Because of that, a new instance of the class "RConnection" is created (line 371). Nevertheless, it
could be the case that the constructor was unable to successfully create a valid connection. Hence,
in line 372-373 the result of the function success() on the created instance is checked. If false is
returned, the connection is invalid and the sobol function will be exited by the return statement.

Sobol’s method requires two sample sets of the model parameters that are meant to be examined.
This is the reason why in line 377-379 two latin hypercube samples are created, which is done by
the use of R commands. Thus, the eval function from the connection instance is used to hand over
the appropriate commands and assignments to the R process. It should be noticed that the sample
set objects for now only exist within the R environment in the context of the stack of the R process
and have thus no mirrored representation in the Java code.

Since the package "sensitivity" from R also possesses the possibility to plot SA results, a correct
naming of data objects is mandatory. Due to that fact, the column names of the created parameter
sets must be set according to the parameters that have been handed over to the function (array of
NumberRef variables). Hence, in line 382-385 the parameter names are assigned for the R data
frame objects with the use of the eval function again.

In R it is most commonly the case that SA is done with the help of specialized SA objects. For
Sobol’s method this also holds true. Because of that, in line 390 a so-called sobol object is created
whilst passing all necessary call arguments. It should be reconsidered that it was predetermined

CHAPTER 2. IMPLEMENTATION DETAILS 30

that initial model assumptions (for example the conjecture of a linear relationship) are neglected
for SA. That is why the model argument of the sobol object is set to NULL, thus model-freeness is
guaranteed. The created sobol object contains the parameter combinations that were selected to be
run with the simulation. Since the model parameters must then be varied in the Java environment
for every simulation run, they have to be parsed from R’s sobol object (line 393). The parsing is
accomplished with the help of the self-defined R helper function flat, which outputs every matrix
entry on a single new output line. That is why the result of the corresponding eval call is handed
over to the Java function parseMatrix, which creates a 2D array with the parameter combinations.

Owning the test set of parameters, the simulation must be run for each parameter combination
whilst gathering the corresponding output measurement. Hence, in line 396 a vector in R that
collects the output readings is created. Afterwards, the simulation is run for every single
parameter combination (line 397-403). For that outcome on every instance of the model
parameters from the NumberRef array parameters the function set is called to globally manipulate
the corresponding parameter value (line 399). Then, the simulation is run (line 401). After that, the
output generating function is called and the result is passed over to R’s target vector (line 402).
What remains is to hand over the simulation results to the sobol object, so that the desired effect
indices can be calculated. On that account, the tell command from R is used in line 406.

As stated before, the results can be plotted using the already existing plotting capability of the
"sensitivity" package. For that outcome, initially a window has to be opened (line 409). The
window will be the address where the later stated plot command is directed to for displaying
charts. Hence, in order to plot the results of Sobol’s method, the plot command is
straightforwardly called with the sobol object as argument (line 410). In order to keep the plot
window reactive the function waitForClose must be used afterwards (line 411).

Furthermore, it must be mentioned that the complete code is wrapped up by a try-catch-statement.
Thus, in case of any error occurrence in line 416-418 the relevant error message is processed and
then printed on the standard debug output and also on the GroIMP console in order to make clear
which operation failed.

CHAPTER 2. IMPLEMENTATION DETAILS 31

2.6 Plugin Structure

= class = static public function = private field
= abstract class = static private function = applied by user
= interface = public function = not applied by user
= public constructor = private function ... : T = return type of function/field

Figure 2.6: "Sensitivity" plugin structure

Chapter 3

Mathematical Foundation

In this chapter every SA approach listed in table 1.1 will be dealt with theoretically.

3.1 Local Sensitivity Analysis

Local SA is a procedure where the model parameters are examined only within a percentage
range of the default value. Hence, the parameter space of an individual model parameter is only
covered partially. Moreover, local SA belongs to the OAT-class (once-at-time) of SA methods.
Thus, for every simulation run only one parameter is modified at a time and then output is
obtained. It is important to recall that hence any local SA approach can only obtain limited
information [17]. Thus it is primarily used to initially identify highly-sensitive parameters and
to get a general overview on sensitivity behavior. However, it is crucial to understand that for
a variant initial parameter configuration the sensitivity measures could be completely different.
In general, there is no definite method one could refer to, as the local SA method. Instead, there
are fundamental mathematical approaches that must always be considered when dealing with
the task of quantifying the change in output value for parameter variations, for example finite
difference approximation or Taylor series expansion [26]. Nevertheless, in this paper local SA is
always referred to the approach described in [17]. The authors suggest calculating two normalized
effect values for every parameter. The sensitivity values are given as a percentage value for the
minimum and the maximum of the examination range. By that, the effect strength is comparable
among the model parameters. Moreover, the sign of the sensitivity value indicates whether the
output decreases or increases within the examination interval extrema.

Let
P := (P1, P2, . . . , Pn)

T (3.1)

be the vector of the n parameters meant to be examined.

32

CHAPTER 3. MATHEMATICAL FOUNDATION 33

Let furthermore
m− ∈ [0, 1] ⊆ R (3.2)

and
m+ ∈ [1,∞) ⊆ R (3.3)

be the relative minimum respectively maximum test value of the examination range. Let the fixed
initial parameter configuration be given by

p = (p1, p2, . . . , pn)
T
. (3.4)

Every entry of the vector p is a realization of a parameter at the corresponding index in the vector
P. Having definedm−,m+ and p it is now possible to define the minimum and maximum versions
of the parameter vector:

p− :=
(
p1m

−, p2m
−, . . . , pnm

−)T , (3.5)

p+ :=
(
p1m

+, p2m
+, . . . , pnm

+
)T
. (3.6)

A single entry from p− and p+ is referenced by p−i = pim
− and p+

i = pim
+.

The simulation function is given by SIM(x), where it holds true that x is a fixed parameter
configuration and thus a realization of P. The result of the function is the desired uni-dimensional
output measurement where the sensitivity is analyzed on, thus

SIM : Rn → R. (3.7)

SIM(p) = SIM
(

(p1, p2, . . . , pn)
T
)

is the base value of the simulation where p is the initial
parameter configuration, thus it is the reference output measurement where the variation in output
is based on relatively when one parameter is manipulated. The function that calculates the relative
change in output (deviation) and is the representative sensitivity measure is called dev(x), where x
is a fixed parameter configuration. In the vector x, only one parameter is varied at a time. Thus
there is exactly one i such that (xi 6= pi) in x = (x1, x2, . . . , xn)

T . The function dev(x) is defined as

dev(x) = dev
(

(x1, x2, . . . , xn)
T
)

:=
SIM(x)− SIM(p)

SIM(p)
∗ 100

=
SIM

(
(x1, x2, . . . , xn)

T
)
− SIM

(
(p1, p2, . . . , pn)

T
)

SIM
(

(p1, p2, . . . , pn)
T
) ∗ 100.

(3.8)

CHAPTER 3. MATHEMATICAL FOUNDATION 34

The result of the local SA is given by the so-called effect matrix which is defined as

Meff(p) =Meff

(
(p1, p2, . . . , pn)

T
)

:=


dev

((
p−1 , p2, . . . , pn

)T)
dev

((
p+

1 , p2, . . . , pn
)T)

dev
((
p1, p

−
2 , . . . , pn

)T)
dev

((
p1, p

+
2 , . . . , pn

)T)
...

...

dev
(

(p1, p2, . . . , p
−
n)

T
)

dev
(

(p1, p2, . . . , p
+
n)
T
)



=



SIM
(
(p−1 ,p2,...,pn)

T
)
−SIM(p)

SIM(p) ∗ 100
SIM

(
(p+1 ,p2,...,pn)

T
)
−SIM(p)

SIM(p) ∗ 100

SIM
(
(p1,p−2 ,...,pn)

T
)
−SIM(p)

SIM(p) ∗ 100
SIM

(
(p1,p+2 ,...,pn)

T
)
−SIM(p)

SIM(p) ∗ 100

...
...

SIM
(
(p1,p2,...,p−n)

T
)
−SIM(p)

SIM(p) ∗ 100
SIM

(
(p1,p2,...,p+n)

T
)
−SIM(p)

SIM(p) ∗ 100


. (3.9)

In the matrixMeff(p) each row belongs to a model parameter. The first and second entries are the
relative deviations in output when the parameter is varied by being multiplied with m− and m+

respectively, whilst all other parameters are kept constant to their initial readings. The sign of each
entry indicates whether the output is reduced or increased. The strength of the effect is then given
by the absolute percentage value.

3.2 Morris’s Elementary Effects Screening

The method of effects screening was developed by Max Morris. It is an assumption-free approach
that is meant to explore models whose numbers of parameters are very high [17] and hence the
application of a variance-based SA technique would be too computationally expensive [27].
Morris’s elementary effects screening is considered to be efficient and fast. The method belongs to
the OAT-class (once-at-time), hence only one parameter is varied whilst the others are kept
constant. However, the parameter configurations that are run with the simulation are randomized
and not fixed to default values [17]. The classification as OAT yields the common fact that the
interacting of parameters cannot be examined by this approach. Since every single model
parameter can obtain any value within its definition range, Morris’s effects screening is also a
global SA method.

CHAPTER 3. MATHEMATICAL FOUNDATION 35

For every parameter so-called elementary effects are calculated based on the mentioned random
parameter configuration. Nevertheless, the effect values do not constitute the output of the
screening, but a statistical analysis of them. Because of that, for each parameter two different
measures emerge: the so-called mu-value µ which is the mean, and the sigma-value σ which is the
standard deviation of the elementary effect readings. It is often the case that the sign of an effect
changes for different parameter configurations. Thus it can occur that in the mean µ the effects are
canceled out and a value close to zero is resulting. This could lead to the false conclusion that the
parameter sensitivity is low and there is only little effect on the output. Because of that, it is
reasonable to calculate the value µ∗, which uses the absolute values of the effect readings as the
base for the mean.

In general a high/low value of µ indicates a likewise high/low impact of the input parameter on
the output. The sigma-value σ on the other hand reveals the degree of non-linear behavior.
Typically the result of Morris’s method is a 2D-plot where µ is the x-axis and σ is the y-axis. Every
model parameter P then is identified by its screening result with the point (µP|σP) in the plot.

Let the output be denoted by Y, let furthermore the Simulation be identified as the function f .
The input factors are given by X1, X2, . . . , Xn. Thus, the input to output relation is given by

Y = f(X1, X2, . . . , Xn). (3.10)

It should be noted that the simulation could possess more input factors - than those in the set
above which are chosen for examination. In that case, the missing parameters are considered as
constants and hence do not appear in the variables list of the output-generating function.

Let the definition ranges of the input parameters be given by

X1 ∈
[
Xmin

1 , Xmax
1

]
,

X2 ∈
[
Xmin

2 , Xmax
2

]
,

...

Xn ∈
[
Xmin
n , Xmax

n

]
.

Since in Morris’s method the simulation is run on random parameter configurations, there is a need
to introduce the input parameters as random variables. Let the random parameters be uniformly
distributed by X1 ∼ U

(
Xmin

1 , Xmax
1

)
, X2 ∼ U

(
Xmin

2 , Xmax
2

)
, . . . , Xn ∼ U

(
Xmin
n , Xmax

n

)
. Let

furthermore x̃i be a realization of Xi , where i ∈ {1, . . . , n}.

CHAPTER 3. MATHEMATICAL FOUNDATION 36

For every input parameter, r ∈ N (r ≥ n) so-called elementary effects are calculated. The base
paper from Morris [27] recommends to choose the r-value directly proportional to the number
of tested model parameters n. In order to obtain a variation value for the i-th parameter and the
j-th calculation (of an elementary effect) the variable ∆ is introduced. Let (x̃i)

∆
j be an arbitrary

realization of Xi in the j-th calculation. Then

∆j(x̃i) := |x̃i − (x̃i)
∆
j |, where i ∈ {1, . . . , n} and j ∈ {1, . . . , r}. (3.11)

Having defined the parameter realizations and ∆, it is now possible to define the j-th elementary
effect of the i-th input parameter:

dij = di ((x̃1)j , (x̃2)j , . . . , (x̃n)j) :=
f
(
(x̃1)j , (x̃2)j , . . . , (x̃i−1)j , (x̃i)j + ∆j(x̃i), (x̃i+1)j , . . . , (x̃n)j

)
∆j(x̃i)

(3.12)
It must be reconsidered that the parameter configuration is randomly drawn for each index j in
the calculation of dij . The formula also makes the OAT affiliation clear, since in the simulation’s
parameter list only the i-th parameter is varied at a time by adding the random deviation value
∆j(x̃i). Having calculated the elementary effects for every parameter, the statistical moments
which yield the sensitivity measures must be calculated as

µi :=
1

r

r∑
j=1

dij =
1

r

r∑
j=1

di ((x̃1)j , (x̃2)j , . . . , (x̃n)j)

=
1

r

r∑
j=1

f
(
(x̃1)j , (x̃2)j , . . . , (x̃i−1)j , (x̃i)j + ∆j(x̃i), (x̃i+1)j , . . . , (x̃n)j

)
∆j(x̃i)

,

(3.13)

µ∗i :=
1

r

r∑
j=1

|dij | =
1

r

r∑
j=1

|di ((x̃1)j , (x̃2)j , . . . , (x̃n)j)|

=
1

r

r∑
j=1

∣∣∣∣∣f
(
(x̃1)j , (x̃2)j , . . . , (x̃i−1)j , (x̃i)j + ∆j(x̃i), (x̃i+1)j , . . . , (x̃n)j

)
∆j(x̃i)

∣∣∣∣∣ ,
(3.14)

σi :=

√√√√ 1

r − 1

r∑
j=1

(dij − µi)2 (3.15)

In the equation for σi it is very important to recall that it holds true that dij coincides with the
instance originating in equation 3.13, hence it is no newly calculated effect value.

CHAPTER 3. MATHEMATICAL FOUNDATION 37

3.3 Main And Interaction Effects On Extreme Values

The approach to examine the main and interaction effects is based on the so-called Design of
Experiments (DoE) methodology [17]. The DoE method tries to find the influential model parameters
but also addresses the planning of simulation runs in order to obtain the desired information.
The authors from [17] suggest using a full-factorial design on the extreme values of the input
parameters. Hence it holds true that one parameter can only obtain two values, namely the
minimum and the maximum. When the number of examined parameters in denoted by n, the
simulation is then run with every of the 2n possible parameter combinations. The result of the
method is given by a linear regression on the averaged output readings for the simulation runs on
the extrema.

By that, a main effect of an input parameter is given by the regression line on the summed up and
averaged output measurements for the two cases where in the parameter configuration the value
appears as minimum respectively maximum. Hence, the resulting line which is the result of the
approach is drawn between the point of the mean output where the parameter is minimum and
the point of the mean output where the parameter is maximum. All other parameters will obtain
any of their two possible readings. This formalism makes also clear that for the calculation of any
main effect the complete result set of the input to output mapping obtained by the 2n simulation
runs is needed. The difference from one parameter to another is thus the correct equipartition
splitting of the result set based on the value occurrence (minimum/maximum).

In order to examine interaction effects it is necessary to vary at least two parameters at a time. In
consideration of the problem of "curse of dimensionality" it was chosen to only analyze binary
parameter relations. Therefore, for the arbitrary parameters Xi and Xj the process of obtaining
the linear relation is firstly done by keeping Xj to its minimum value whilst Xi is varied from its
minimum to maximum. The same procedure is then repeated while Xj is kept to its maximum
reading. By that, the resulting lines reveal whether there is any interaction between the two
parameters synergistically influencing the dedicated output quantity.

Let the parameters be denoted by X1, X2, . . . , Xn and only obtain the values from the following
sets:

X1 ∈ {Xmin
1 , Xmax

1 },

X2 ∈ {Xmin
2 , Xmax

2 },

...

Xn ∈ {Xmin
n , Xmax

n }.

CHAPTER 3. MATHEMATICAL FOUNDATION 38

Let furthermore the output-generating simulation be given by

Y = f(X1, X2, . . . , Xn). (3.16)

In order to obtain the main effect of a parameter the simulation must be run with the parameter as
minimum and then as maximum. Let Ymin

i and Ymax
i be defined as the sum of output readings

where the i-th parameter occurs solely as minimum respectively maximum:

Ymin
i :=

∑

∗



X̃1∈{Xmin
1 ,Xmax

1 },
X̃2∈{Xmin

2 ,Xmax
2 },...

X̃i−1∈{Xmin
i−1 ,X

max
i−1 },

X̃i+1∈{Xmin
i+1 ,X

max
i+1 },...

X̃n∈{Xmin
n ,Xmax

n }

f(X̃1, X̃2, . . . , X
min
i , . . . , X̃n). (3.17)

Ymax
i :=

∑
∗
f(X̃1, X̃2, . . . , X

max
i , . . . , X̃n). (3.18)

Since the number of simulation runs is 2n and since a parameter can only obtain two different
values, the parameter occurs half the number of simulations as minimum respectively maximum.
Thus, the averaged output for a single input variable on the minimum and maximum is given by

Ymin
i =

Ymin
i

2n−1
and (3.19)

Ymax
i =

Ymax
i

2n−1
. (3.20)

The linear regression for the main effect of the single parameter Xi is calculated as

gi(x) =
Ymax
i −Ymin

i

Xmax
i −Xmin

i

(
x−Xmin

i

)
+ Ymin

i , where x ∈
[
Xmin
i , Xmax

i

]
. (3.21)

For the interaction effect it is necessary to define the summed up outputs for the setting of two
variables being minimum or maximum. Hence

CHAPTER 3. MATHEMATICAL FOUNDATION 39

Y
i|min
j|min :=

∑

∗∗



X̃1∈{Xmin
1 ,Xmax

1 },
X̃2∈{Xmin

2 ,Xmax
2 },...

X̃i−1∈{Xmin
i−1 ,X

max
i−1 },

X̃i+1∈{Xmin
i+1 ,X

max
i+1 },...

X̃j−1∈{Xmin
j−1 ,X

max
j−1 },

X̃j+1∈{Xmin
j+1 ,X

max
j+1 },...

X̃n∈{Xmin
n ,Xmax

n }

f(X̃1, X̃2, . . . , X
min
i , . . . , Xmin

j , . . . , X̃n), (3.22)

Y
i|min
j|max :=

∑
∗∗
f(X̃1, X̃2, . . . , X

min
i , . . . , Xmax

j , . . . , X̃n), (3.23)

Y
i|max
j|min :=

∑
∗∗
f(X̃1, X̃2, . . . , X

max
i , . . . , Xmin

j , . . . , X̃n), (3.24)

Y
i|max
j|max :=

∑
∗∗
f(X̃1, X̃2, . . . , X

max
i , . . . , Xmax

j , . . . , X̃n). (3.25)

With two constraints on the selection of parameters in the sum of outputs there are only 1
4 addends

of the number of simulation runs. Thus, the averaged outputs are given by

Y
i|min
j|min =

Y
i|min
j|min

2n−2
, (3.26)

Y
i|min
j|max =

Y
i|min
j|max

2n−2
, (3.27)

Y
i|max
j|min =

Y
i|max
j|min

2n−2
and (3.28)

Y
i|max
j|max =

Y
i|max
j|max

2n−2
. (3.29)

The interaction effect between the parameters Xi and Xj is represented by two regression lines.
The first line represents the behavior of parameter Xi which is varied from minimum to maximum
whilst parameter Xj is kept to its minimum. The second line represents the behavior of parameter
Xi when parameter Xj is kept to its maximum. This convention also illustrates that the interaction
between Xi and Xj versus the interaction between Xj and Xi is a completely different concern
and will result in two differing plots.

CHAPTER 3. MATHEMATICAL FOUNDATION 40

The regression is carried out as follows:

g
j|min
i (x) =

Y
i|max
j|min −Y

i|min
j|min

Xmax
i −Xmin

i

(
x−Xmin

i

)
+ Y

i|min
j|min, where x ∈

[
Xmin
i , Xmax

i

]
and (3.30)

g
j|max
i (x) =

Y
i|max
j|max −Y

i|min
j|max

Xmax
i −Xmin

i

(
x−Xmin

i

)
+ Y

i|min
j|max, where x ∈

[
Xmin
i , Xmax

i

]
. (3.31)

3.4 Partial (Rank) Correlation Coefficients (PCC/PRCC) and

Standardized (Rank) Regression Coefficients (SRC/SRRC)

The domain of calculating correlation measures studies the amount of linearity between variables
in order to reveal a mutual influence. The term correlation is herein explicitly attributed to a linear
functional dependency. Classical correlation techniques are only capable of examining binary
parameter relations. Because of that, the approaches to calculate the so-called partial correlation
coefficients (PCC) and standardized regression coefficients (SRC) are able to examine multiple input
variables influencing a single output reading [17]. Thus, the PCC/SRC are also used as a tool for
SA. For the case that a non-linear relationship between input and output is expected, the so-called
rank versions of the partial correlation coefficients and standardized regression coefficients PRCC
and SRRC are used to measure the effect strength. The data base here is not given by the real data
but by the rank (index of an item in the sorted list) of every date. The coefficients then are
calculated based on ranks rather than on the true values. However both methods rely on the
Pearson correlation coefficient (CC) and on linear regression as their base for the further
calculation of the coefficients [28].

The approaches of PCC/PRCC and SRC/SRRC make no statements about the planning of
experiments. They are supposed to be applied when the data of input to output mapping is
already available. That is why it is supposed that the data was generated by the means of drawing
each parameter configuration randomly from a uniform distribution over the parameter space.
Utilizing a uniform distribution is very important since the calculated sensitivity values heavily
depend on the initial input parameter distribution.

PCC and SRC deliver similar sensitivity measures. However the methods differ slightly in their
addressed objectives. The SRC approach tries to find the relative importance of the input
parameters [28]. This is done by calculating the regression coefficients, which are the partial
derivatives of the linear regression model considering the input variables. Nevertheless a relevant
drawback is the unreliability issue originating from the order/magnitude of a single input reading
(for example meter to millimeter) making a regression coefficient inappropriate as a relative

CHAPTER 3. MATHEMATICAL FOUNDATION 41

importance measure [28]. Because of that, the regression coefficients are standardized by being
multiplied with the ratio of the standard deviations between the input and output variables [17].
This formulation makes the SRC a direct criterion for the relative parameter importance.

The PCC uses the sample correlation as a measure for the strength of the linear relationship
between a single input and the output. In order to build the linear model the input parameter that
has the strongest influence could be used as a starting point [28]. The PCC therefore represents a
measure for the singular connection amongst two variables when the relation cannot be explained
for the two ones regarding all remaining variables [28]. Hence the PCC indicates the goodness of
adding a particular parameter to an existing linear model.

Let the n input parameters be given as random variables:

X1 ∼ U
(
Xmin

1 , Xmax
1

)
,

X2 ∼ U
(
Xmin

2 , Xmax
2

)
,

...

Xn ∼ U
(
Xmin
n , Xmax

n

)
.

Furthermore let (x̃1)i, (x̃2)i, . . . , (x̃n)i denote the respective i-th realization of X1, X2, . . . , Xn. The
following elaborations will use the matrix notation according to Iman et al. [28]. The matrix MIO

maps the input configuration to the output readings. Let yk be the k-th output generated by the
simulation run with the k-th random parameter configuration. It is supposed that m parameter
configurations were drawn. Hence,

MIO :=


(x̃1)1 (x̃2)1 . . . (x̃n)1 y1

(x̃1)2 (x̃2)2 . . . (x̃n)2 y2

...
...

...
...

(x̃1)m (x̃2)m . . . (x̃n)m ym

 (3.32)

For the calculation of the PCC/SRC, obtaining the empirical Pearson correlation coefficient (CC)
between parameters Xi and Xj is mandatory. Thus, let rij denote the CC by

rij :=

∑m
l=1 ((x̃i)l − xi) ((x̃j)l − xj)√∑m

l=1 ((x̃i)l − xi)2 ·
∑m
l=1 ((x̃j)l − xj)2

, i, j ∈ {1, . . . , n}, (3.33)

CHAPTER 3. MATHEMATICAL FOUNDATION 42

where

xi :=
1

m

m∑
l=1

(x̃i)l. (3.34)

The definition 3.33 makes also clear that rii = 1, and that rij = rji. Having defined MIO and rij it is
necessary to define the so-called correlation matrix [28] which holds all possible Pearson correlation
coefficients including the values of ryi which stand for the correlation of the output y with a certain
input parameter Xi. The matrix is given by

C :=


1 r12 r13 . . . r1n r1y

r21 1 r23 . . . r2n r2y

.

rn1 rn2 1 rny

ry1 ry2 ryn 1

 , (3.35)

where

ryi :=

∑m
l=1 (yl − y) ((x̃j)l − xj)√∑m

l=1 (yl − y)
2 ·
∑m
l=1 ((x̃j)l − xj)2

, i ∈ {1, . . . , n}, (3.36)

and

y :=
1

m

m∑
i=1

yi. (3.37)

The definition of rij makes the correlation matrix C symmetric. The dashed lines in matrix C
indicate a partitioning that is in the following denoted as

C =


1 r12 r13 . . . r1n r1y

r21 1 r23 . . . r2n r2y

.

rn1 rn2 1 rny

ry1 ry2 ryn 1

 =

(
C11 C12

C21 1

)
. (3.38)

To derive the PCC/SRC values the inverse of C needs to be calculated. It is well known [28] that
C−1 can be written as

C−1 =

 (C11 − C12C21)
−1 −C−1

11 C12

(
1− C21C

−1
11 C12

)−1

−
(
C−1

11 C12

(
C21C

−1
11 C12

)−1
)T (

1− C21C
−1
11 C12

)−1

 . (3.39)

Since PCC and SRC are regression based methods - hence the output values are regressed on
the input values - the so-called coefficient of determination, which is the variance of the dependent
parameter that is predictable from the independent parameters, is given by

R2
y = C21C

−1
11 C12. (3.40)

CHAPTER 3. MATHEMATICAL FOUNDATION 43

Let B = C−1
11 C12, then C−1 can be written as

C−1 =

(
(C11 − C12C21)

−1 −B/
(
1−R2

y

)
−BT /

(
1−R2

y

)
1/
(
1−R2

y

)) . (3.41)

A closer look to the matrix B reveals that it coincides with the SRC, the desired regression solution.
Thus 

SRCX1

SRCX2

. . .

SRCXn

 =


B1

B2

. . .

Bn

 = C−1
11 C12, (3.42)

where Bi is the i-th entry in the vector B and i ∈ {1, . . . , n}.

In the submatrix (C11 − C12C21)
−1 the diagonal entries contain the coefficients of determination of

the single regression of a parameter Xi on the output Y and the remaining parameters by the
relation 1/(1 − R2). In particular, a single entry from the diagonal in the i-th column of the
submatrix is given by 1/

(
1−R2

Xi

)
. Thus C−1 expands to

C−1 =


1/
(
1−R2

X1

)
c12 . . . c1n −B1/

(
1−R2

Y

)
c21 1/

(
1−R2

X2

)
. . . c2n −B2/

(
1−R2

Y

)
.

cn1 cn2 . . . 1/
(
1−R2

Xn

)
−Bn/

(
1−R2

Y

)
−B1/

(
1−R2

Y

)
−B2/

(
1−R2

Y

)
. . . −Bn/

(
1−R2

Y

)
1/
(
1−R2

Y

)

 . (3.43)

The equation 3.43 makes it possible to directly obtain the PCC value for the input parameter Xi:

PCCXi
: = −ciy/ (ciicyy)

1
2

=
Bi/

(
1−R2

Y

)√(
1/
(
1−R2

Xi

))
(1/ (1−R2

Y))

= Bi

√
1−R2

Xi

1−R2
Y

, i ∈ {1, . . . , n}.

(3.44)

In order to calculate the rank version of the partial correlation coefficients and the standardized
regression coefficients, it is necessary to transform the input data according to their ranks. The
original data matrix that holds the input to output mapping was given by definition 3.32. Each
column in the matrix MIO represents the values a parameter (input or output) can obtain. For the
purpose of transforming every single entry in the matrix to its rank, the values need to be sorted.

CHAPTER 3. MATHEMATICAL FOUNDATION 44

Let the ascending sorting be denoted by the transformation:


(x̃i)1

(x̃i)2

...
(x̃i)m

 −→


(x̃i) 1

(x̃i) 2
...

(x̃i) m


. (3.45)

The rank of a single parameter value is given by the index in the sorted vector. Let the index be
obtained by the function Rank:

Rank ((x̃i)j) = k, when


...

(x̃i)j
...

 match−−−→


...

(x̃i)
k

...

 and (x̃i)j = (x̃i)
k
. (3.46)

In the case that an element in vector
(

(x̃i) 1
(x̃i) 2

. . . (x̃i) m

)T
occurs multiple times, for

example (x̃i)
k1

= (x̃i)
k2

= . . . = (x̃i)
kp

, then it is defined that the Rank is calculated as

Rank ((x̃i)j1) = Rank ((x̃i)j2) = . . . = Rank
(
(x̃i)jp

)
=
k1 + k2 + . . .+ kp

p
,

where (x̃i)j1 = (x̃i)j2 = . . . = (x̃i)jp = (x̃i)
k1

= (x̃i)
k2

= . . . = (x̃i)
kp

.
(3.47)

The rank version of the matrix MIO is then given by

(MIO)
Rank

:=


Rank ((x̃1)1) Rank ((x̃2)1) . . . Rank ((x̃n)1) Rank (y1)

Rank ((x̃1)2) Rank ((x̃2)2) . . . Rank ((x̃n)2) Rank (y2)
...

...
...

...
Rank ((x̃1)m) Rank ((x̃2)m) . . . Rank ((x̃n)m) Rank (ym)

 . (3.48)

The further procession to calculate the partial rank correlation coefficients (PRCC) and the
standardized rank regression coefficients is equivalent to the calculation of the PCC/SRC values,
however the base in order to yield the matrix C is given by the matrix (MIO)

Rank.

CHAPTER 3. MATHEMATICAL FOUNDATION 45

3.5 Sobol’s Method

The approach of Sobol represents a member of the so-called variance decomposition SA methods [17].
The main idea is to decompose the output’s variance such that it is constructed of variance
contributions from the input factors. The total variance is attributed not only to the sum of
variances of the single input parameters themselves but also to interaction effects between
them [29]. The sensitivity measure for a certain parameter is called main effect and coincides with
the variance contribution in the total output variance formula. Thus, the variance can be directly
used in SA as a relative parameter importance measure [29]. This measure is also called first-order
Sobol index or first-order sensitivity index [8]. The higher-order indices denote the interaction effects.
Herein all variances of the subsets from the parameter space contribute to the total output
variance. Hence, when the number of input parameters is n, Sobol’s method calculates the
first-order up to the n-th-order effect indices.

Let the input to output (scalar) mapping be given by

Y = f (X1, X2, . . . , Xn) . (3.49)

The input parameters X1, X2, . . . , Xn are considered to be random variables and being identically
independently distributed by the (not-explicitly defined) density p(x). Thus,
X1 ∼ p(x), X2 ∼ p(x), . . . , Xn ∼ p(x). In the following, the notation will stick to the formulation
using random variables. Nevertheless, when considering concrete input parameter configurations
(for example drawn from a uniform distribution) the simulation is run with, the expectation
operator E should be replaced by the sample mean, and the variance operator V by the sample
variance.

The base of Sobol is the decomposition of the target function Y in terms of increasing
dimensionality [8]:

Y = f (X1, X2, . . . , Xn) = f0 +

n∑
i=1

fi(Xi)

+
∑

1≤i<l≤n

fil (Xi, Xl)

+ . . .+ f1,2,...,n (X1, . . . , Xn) .

(3.50)

Since it is supposed that all parameters are independent, the output variance is given by

V [Y] = V [f (X1, X2, . . . , Xn)] =

n∑
i=1

Vi +
∑

1≤i<l≤n

Vil + . . .+ V1,2,...,n, (3.51)

CHAPTER 3. MATHEMATICAL FOUNDATION 46

where

Vi = V [fi] = VXi

[
EX−i

[Y|Xi]
]

Vil = V [fil] = VXil

[
EX−il

[Y|Xi, Xl]
]
− Vi − Vl

Vilk = V [filk] = VXilk

[
EX−ilk

[Y|Xi, Xl, Xk]
]
− Vil − Vik − Vlk − Vi − Vl − Vk

...

V1,2,...,n = V [f1,2,...,n] = V [Y]−
n∑
i=1

Vi −
∑

1≤i<l≤n

Vil − . . .−
∑

1≤i1<...<in−1≤n

Vi1,...,in−1 .

(3.52)

Let the effect indices be denoted by Si, Sil, . . . , S1,2,...,n. The first-order effect indices are defined as

Si :=
VXi

[
EX−i [Y|Xi]

]
V [Y]

=
Vi [E−i [Y|Xi]]

V [Y]
=

Vi
V [Y]

, (3.53)

where VXi
= Vi denotes the parameter-specific variance, hence the variance over all values the

random variable Xi can obtain. In the notation for the expectation value EX−i = E−i, the −i
denotes all parameters except Xi.

The higher-order effect indices are further given by

Sil :=
Vil
V [Y]

,

Silk :=
Vilk
V [Y]

,

...

Si1,...,is :=
Vi1,...,is
V [Y]

,

...

S1,...,n :=
V1,...,n

V [Y]
.

(3.54)

The equation 3.52 and the definitions 3.53 and 3.54 yield that the effect indices sum up to 1. Thus

1 =

n∑
i=1

Si +
∑

1≤i<l≤n

Sil + . . .+ S1,2,...,n. (3.55)

The authors from [30] also suggest calculating the so-called total effect index. This measure can be
used as a parameter screening approach [8]. It is defined as the sum over all variance contributions

CHAPTER 3. MATHEMATICAL FOUNDATION 47

a parameter possesses in the total output variance. Hence

STi : =
∑

j|index i contained in
index combination j

Sj

= 1−
VX−i [EXi [Y|X−i]]

V [Y]

= 1−
VX−i [EXi [Y|X1, X2, . . . , Xi−1, Xi+1, . . . , Xn]]

V [Y]

= 1− S−i

(3.56)

The formula 3.56 reveals that an essential figure is the difference |STi − Si| between the total effect
index and the main effect index. It indicates the amount of interaction effects [8] [31].

3.6 Extended Fourier Amplitude Sensitivity Test (EFAST)

The extended Fourier amplitude sensitivity test (EFAST) produces the same sensitivity measures
as Sobol’s method [17]: first-order and total effect indices. Calculated indices from Sobol and
EFAST converge to the same readings when the number of simulation samples goes to infinity.
However, EFAST is more efficient because for the same accuracy EFAST requires substantially less
samples than Sobol’s method [32]. Like Sobol, EFAST also belongs to the variance decomposition
approaches. Here, Fourier series expansion is used to obtain the sensitivity indices which indicate
the influence of input parameters to a specific output. EFAST is an extension of the classical FAST
approach. The extension was established by Saltelli [32] who suggests to also calculate the total
effect indices which sum up all variance contributions of a single parameter (including
interactions) appearing in the variance output formula. The following elaborations use the
notation by Saltelli [32].

Let the input to output relationship be given by the function f :

Y = f (X1, X2, . . . , Xn) . (3.57)

For the sake of simplicity it is assumed that all input parameters can only take values in [0, 1] ⊆ R.
Hence the n-dimensional input space is given by

Kn = {X = (X1, . . . , Xn) |0 ≤ Xi ≤ 1, i = 1, . . . , n} (3.58)

For the exploration of the output’s variance the mono-dimensional Fourier decomposition needs
to systematically explore the input space Kn. Thus, the decomposition is done along the set of

CHAPTER 3. MATHEMATICAL FOUNDATION 48

parametric exploration curves [32] defined by

Xi(s) =
1

2
+

1

π
arcsin (sinωis)∀i = 1, . . . , n, (3.59)

where s ∈ (−∞,+∞) is the variation variable where when s changes all parameters
simultaneously are varied, systematically exploring Kn. The values {ωi}, i = 1, . . . , n constitute
the set of angular frequencies. Each frequency is selected beforehand individually for every single
parameter. Thus, each Xi oscillates with the frequency ωi resulting in oscillations in the output
reading which then can be associated with the input oscillation frequencies [32]. The selection of
frequencies is slightly complicated. It depends on the number of parameters as well as the
sufficient number of samples. Since only the main idea is meant to be presented here, for more
information about determining the sample size and selecting the frequencies it is recommend to
sight the base paper of EFAST by Saltelli [32].

The sensitivity measure that results is coinciding with the strength of the amplitude an input
parameter evokes in the output curve. An element of the set of oscillation frequencies requires not
to be linearly combinable of the other ones. The sufficient condition to ensure this property is
given by

n∑
i=1

riωi 6= 0,−∞ < ri < +∞. (3.60)

Let the output that is generated by the s-th variation of the input parameters be denoted by

Ys = f(s) := f (X1(s), X2(s), . . . , Xn(s)) (3.61)

Fourier series expansion of f(s) yields

f(s) =

+∞∑
j=−∞

(Aj cos js+Bj sin js) , (3.62)

where Aj and Bj represent the Fourier coefficients. They are defined as

Aj :=
1

2π

∫ +π

−π
f(s) cos js ds (3.63)

and

Bj :=
1

2π

∫ +π

−π
f(s) sin js ds (3.64)

where j ∈ Z. The Fourier series’ spectrum is by definition:

Λj = A2
j +B2

j , j ∈ Z. (3.65)

CHAPTER 3. MATHEMATICAL FOUNDATION 49

Obtaining the spectrum for the fundamental frequency ωi and its multiples pωi yields the partial
variance coming from the concrete input parameter Xi. Let it be denoted by D̂i. Hence

D̂i =
∑

p∈Z,p6=0

Λpωi
= 2

∞∑
p=1

Λpωi
. (3.66)

The sum over all Λj , j ∈ Z\{0} coincides with the total variance. Let this quantity be denoted by

D̂ :=
∑

j∈Z,j 6=0

Λj = 2

∞∑
j=1

Λj . (3.67)

Then, a parameter’s main effect is given by the ratio of its variance and the total variance. Thus

ŜFASTi =
D̂i

D̂
. (3.68)

Saltelli [32] suggests then calculating the total effect index for the parameters using the following
approach: For the i-th parameter the frequencies are chosen such that ωi is assigned to Xi and
ω(i′) to all other parameters. When the spectrum for the frequencies ωi and ω(i′) is evaluated, the
Variance D̂(−i) can be obtained, where the index (−i) stands for all parameters except the i-th one.
The total effect index is then obtained by

ŜTFASTi =
D̂ − D̂(−i)

D̂
= 1−

D̂(−i)

D̂
. (3.69)

Chapter 4

Sensitivity Analysis of Plant Models

In this chapter the sensitivity analysis of two plant models is carried out using the developed
plugin.

4.1 Beech Tree

The beech tree is a simplified plant model. It contains the modeling of the primary and secondary
growth (length and width) of young beeches (Fagus sylvatica). A light model that represents a
light source and calculates the absorbed light of the leaves including shadowing is incorporated.
Hence, an implementation of the photosynthesis process can also be found. Furthermore, the
transport of biomass within the plant organs (leaves, shoot nodes, stem) is comprised. The model
was developed by Ole Kniemeyer and an early version was published in his dissertation [33]. As
known from chapter 2, a plant model must be prepared for SA. However, it was chosen to omit a
description of the preparation since the basic concept was thoroughly described in chapter 2. The
original source code as well as the modified version can be found on the supplementary CD. The
main objective is to test the developed sensitivity plugin and to examine the beech tree, which may
yield some insightful results. Nevertheless, due to the amount of data that is processed by the SA
functions and the number of results they produce, only a selection of parameters can be analyzed.
Therefore, seven input parameters were chosen regarding two outputs, namely the height of the
tree and the total carbon production. Since the beech model’s source code in many places contains
randomness (Gaussian distribution), for a fixed setting the output is generated by averaging over
100 simulation runs with identical input parameter configuration. The SA of the tree is carried out
for one and the same fixed point in its lifetime: after ten years of growth. In table 4.1 the input
parameters are described including their initial readings and variation ranges. For local sensitivity
analysis it was determined that the initial parameter value is varied with a deviation of ±20%.

50

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 51

parameter name description initial value variation range

branching_angle The angle between the leaf and the
branch it is attached to is controlled
by the parameter branching_angle. As
a side effect, the parameter also
indirectly governs the angle between a
light ray and the leaf surface.

64◦ 35 . . . 85◦

createShort_
vitality_threshold

The emergence of new shoot parts
from a bud is influenced by the
parameter createShort_vitality_threshold.
If the vitality of the bud is below the
threshold, only a short branch will be
created. Otherwise - depending on the
vitality - a certain number of newly
created internodes constitute the newly
generated shoot.

2.2 0.5 . . . 5.0

leaf_area The area a newly created leaf possesses
is directly controlled by the parameter
leaf_area. In the model it is supposed
that a new leaf instantly arises without
any growth occurring to create it.

0.002m2 0.0005 . . . 0.04m2

VIT_MAX The parameter VIT_MAX is the
maximal vitality value a bud can
obtain. It is a dimensionless reading
maintained and assigned to each
bud depending on its position in the
order hierarchy. The vitality is in a
functional dependency to the number
of branches that are created.

8 2 . . . 20

Table 4.1: Overview of the examined beech’s input parameters

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 52

parameter name description initial value variation range

light_days The number of days per year with full
light is given by the parameter light_days.
That means, if there are ten hours of light
per day, the reading will be: light_days =
10
24 × 365 = 152.

152 1 . . . 365

PPFD_FACTOR The parameter PPFD_FACTOR represents
the variation factor for the so-called
photosynthetically active photon flux density
- which is the intensity value for the
photosynthetically relevant light and also
the amount of light available. In order
to vary the amount of available light the
variation of the photosynthetically active
photon flux density is done by simply
multiplying the value with the variation
factor inducing a linear change.

1.0 0.22 . . . 2.17

EFFICIENCY The ability of the tree to metabolize
the available light is affected by the
EFFICIENCY parameter. That means a
plant can always only use a fraction of the
incoming energy. This value is given by
the parameter.

0.07 0.005 . . . 0.12

Table 4.1: Overview of the examined beech’s input parameters (cont’d)

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 53

4.1.1 Local Sensitivity Analysis

parameter value tree height total carbon production

branching_angle_min 8.53 -19.85
branching_angle_max -9.66 6.43
createShort_vitality_threshold_min -1.87 -1.41
createShort_vitality_threshold_max -2.93 -4.59
leaf_area_min -13.57 -28.92
leaf_area_max 2.21 28.30
VIT_MAX_min -22.47 -40.97
VIT_MAX_max 14.66 62.94
light_days_min -12.40 -47.63
light_days_max 1.68 65.85
PPFD_FACTOR_min -16.13 -48.89
PPFD_FACTOR_max -0.31 68.20
EFFICIENCY_min -15.51 -50.15
EFFICIENCY_max 1.83 76.55

Table 4.2: Results for the local sensitivity analysis of the beech tree

In table 4.2 the results of the local SA can be found. It should be recalled that the subscripts min and
max stand for the particular extreme value of a parameter in the examination range. The values in
table 4.2 indicate the percentage change of the output value relatively to the output reading for the
initial parameter configuration when the respective parameter appears as minimum or maximum.
The first thing noticeable is the fact that the output deviation of the tree height or the total carbon
production does not exceed approximately 23% respectively 77%. However, since LSA belongs
to the OAT-class of SA methods, it is too early to consider this as the deviation’s upper bound
because LSA does not examine interaction effects. Another interesting observation is that the tree
height is less sensitive than the total carbon production. The variances of the carbon readings are
noticeably higher. For the tree height the vitality parameter has the highest influence compared to
the other parameters. The lowest and thus non-essential sensitivity values can be observed for
the branching angle and the vitality threshold. Nevertheless, the highest reading in the column of
the tree height resides in the range of the 4th lowest reading of the carbon production sensitivity
values. Considering the parameter influence, it has to be stated that the leaf area, the vitality, the
light days and the two photosynthesis parameters possess the most important influence in the
LSA. For the total carbon production the efficiency parameter must be attributed to be the most
influential one. The results prove that LSA can just enable an initial parameter screening and thus
results in a rough overview of the most likely expected behavior neglecting interaction effects.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 54

4.1.2 Morris’s Elementary Effects Screening

Figure 4.1: Results of Morris’s elementary effects screening of the beech tree’s height

Figure 4.2: Results of Morris’s elementary effects screening of the beech tree’s carbon production

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 55

In figure 4.1 and figure 4.2 the results of Morris’s elementary effects screening can be found. At a
first look it clearly can be seen that one result of the local SA is also detectable in the Morris plots:
the effects of the input parameters on the total carbon production reside much higher compared to
the effects on the tree height. It should be noted that in the plots the modified mu value µ∗ is
shown due to the reason mentioned in chapter 3, that means to avoid canceling out of calculation
terms because of their signs. Using the original definition of mu could mistakenly lead to the
conclusion that a parameter has just a minor effect, which comes from not recognizing highly
non-linear effects (values cancel out to near zero). In the plot it holds true that the further right a
parameter is, the more influence can be attributed to it considering the respective output.

For the tree height the result of the local SA can be confirmed besides some minor differences. The
vitality and efficiency parameters also belong to the most influential ones regarding tree height.
The branching angles as well as the vitality threshold values seem to have little to none influence
and thus very little sensitivity. Morris’s methods can reveal the degree of non-linearity by the
sigma value. However, it must be reconsidered that all values of mu and sigma are no absolute
values. They are only suitable for comparison purposes within the set of the examined parameters.
Concerning non-linear behavior the leaf area, the efficiency and the vitality have the highest
variance readings indicating a more complex parameter association with the height output.

The carbon production mainly is influenced by the efficiency and the available light
(PPFD_FACTOR). The plot yields the interesting fact that the efficiency essentially affects the tree
height as well as the carbon production. Nevertheless, one can expect that the higher the tree
grows the more carbon is needed to create the required biomass. Moreover, the plot makes clear
that the amount of available light is also crucial for the production of carbon. The vitality
threshold does not govern the carbon production. That is why the value is near zero. The variance
of the efficiency parameter and the PPFD_FACTOR is high. Hence, it can be expected that there is
a rather complex link between carbon production and these parameters, which is not uncommon
considering the process of photosynthesis. At the end it must be mentioned that only elementary
effects are revealed by the screening. It should only be used for the ranking of parameters and for
obtaining a first impression of the parameter behavior. Aside from that, interaction effects remain
untouched. Because of that, the overall sensitivity can differ heavily when interactions of
parameters take place.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 56

4.1.3 Main And Interaction Effects On Extreme Values

Figure 4.3: Results for main effects on extreme values of the beech tree’s height

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 57

Figure 4.4: Results for interaction effects on extreme values of the beech tree’s height

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 58

Figure 4.5: Results for main effects on extreme values of the beech tree’s carbon production

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 59

Figure 4.6: Results for interaction effects on extreme values of the beech tree’s carbon production

The figures 4.3 and 4.5 show the main effect plots for the tree height and the total carbon
production. Figures 4.4 and 4.6 show the interaction effects plot. It must be reconsidered that the
examination was done with the extreme values of the examination range. Thus, this method can
deliver sufficient sensitivity data to obtain large interaction effects. The results confirm the
findings of the local SA and the effects screening. The branching angle and the vitality threshold
have minor effects on both output readings. The vitality threshold has a negative correlation.
Hence, with higher values for the threshold the output readings decline. For the other parameters
a positive correlation can always be found except the curve for the tree height against the

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 60

branching angle, which is approximately flat. Again a strong relationship between the tree height
and the total carbon production with the vitality and the efficiency can be recognized. For the
carbon production the sensitivity of the light days is shown to be more important than expected
from the Morris plots. All in all, the main effect plots deliver only a few new insight compared to
the already applied SA methods. More interesting results are yielded by the interaction plots.

In the interaction plots each row can be attributed to a special setting of the blue colored parameter.
The corresponding entry in the column is the plot when the parameter from this column is varied
from minimum to maximum. A red square indicates that the row’s parameter is at its minimum. A
black triangle coincides with the maximum. For the tree height the branching angle does not
interact with any other parameter. That is why in the plot the curves are identical for both extreme
values of the angle. The vitality threshold interacts with each other parameter. For its minimum
reading the effect of the other parameters is greater. For the maximum the opposite is the case.
Additionally, the slopes of the curves are identical, but the curves are shifted up or down. The leaf
area has a slight influence on the tree height. All variation curves for the maximal leaf area are
above the curves with minimal leaf area. The curves’ slope is increased for the vitality, the light
days and the efficiency. Thus, in connection with a bigger leaf area and an increase of the
mentioned parameters the tree height also increases further. The vitality parameter was known
from the local SA to be greatly influential on the tree height. The interaction plot supports this.
This can be seen in the jumps the curves experience when comparing minimum to maximum lines.
Synergistic effects can be observed between the vitality and the light days, the the input of
photosynthesis (PPFD_FACTOR) and the efficiency. When the vitality is at its maximum, the tree
height drastically increases for rising values of these three parameters. The branching angle, the
vitality threshold and the leaf area do not interact with the available light (PPFD_FACTOR) and
the efficiency. The curves’ starting points are just higher, but this is attributed solely to the
respective parameter. In the plot it clearly can be seen that the number of light days, the input of
photosynthesis (PPFD_FACTOR), the vitality and the efficiency synergistically influence each
other leading to a strong height growth of the beech. Furthermore, when these parameters reside
in their minimum reading, just minor growth takes place. This is indicated by the flatness of the
red curves that coincide with the parameter setting where the respective ones are minimum.

The carbon production is affected marginally by the branching angle parameter. This can be
clearly seen in the plot as the slope of the curves is just slightly higher with the maximum
compared to the minimum setting. The vitality threshold shows the opposite behavior. Here, for
the minimum value of the threshold the curves’ slopes are a bit higher. However, compared to the
other effects the results of the first two parameters are negligible and the findings of the local SA
and Morris’s screening are confirmed. In the examination of the carbon production the same result
was revealed as from the tree height. The leaf area, the vitality parameter, the light days, the
available light (PPFD_FACTOR) and the vitality heavily interact. This finding is considerably

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 61

visible in the interaction plots. Whilst the value for the carbon production remains near zero when
each of the mentioned parameters is at its minimum, the curve drastically rises when it is at its
maximum. This is the case for every single binary parameter interaction considering the most
sensitive parameters.

4.1.4 Partial (Rank) Correlation Coefficients

Figure 4.7: Results for the partial correlation coefficients of the beech tree’s height

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 62

Figure 4.8: Results for the partial rank correlation coefficients of the beech tree’s height

Figure 4.9: Results for the partial correlation coefficients of the beech tree’s carbon production

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 63

Figure 4.10: Results for the partial rank correlation coefficients of the beech tree’s carbon production

The figures 4.7, 4.9, 4.8 and 4.10 show the partial correlation coefficients and their rank versions for
the examination of the beech’s height and carbon production. In the plots to each parameter the
respective correlation value is assigned. The vertical lines around every point coincide with the
predicted uncertainty of the sensitivity measure. A value in the plot indicates whether there is a
link between the input and output parameters and the degree of linearity between them. A value
of 1.0 would yield that there is a direct linear dependency between the input and the output. A
value near 0.0 signifies that there is virtually no influence and thus low or no sensitivity.

Concerning the results for the tree height, the first thing noticeable is that the rank version shows
approximately the same readings as the non-rank version. However, this does not show that there
is no non-linear behavior present. It reveals the monotonicity of the parameters. That means,
increasing an input parameter leads to an increase in output. Nevertheless, the amount of effect
increase (curve’s derivative) may differ noticeably depending on the kind of functional - however
monotonic - dependency. The insignificance of the branching angle parameter as well as the vitality
threshold is confirmed repeatedly. The uncertainty of the first three parameters is considerably
higher compared to the remaining ones. This indicates that depending on the concrete parameter
configuration the value’s contribution to the output could exceed the initial expectation. The lowest
uncertainty and further the highest influence and linearity is attributed to the vitality parameter.
This confirms the findings of the SA methods applied before. The remaining parameters also show
relatively high readings in the range of 0.6 . . . 0.75 which yields an important influence. However,
the readings are clearly below 1.0 which exhibits that the connection is not totally linear, revealing
presumably a more complex process.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 64

In the plots for the total carbon production there is a noticeable difference between the rank and
the non-rank version. The identified influential parameters possess higher correlation readings in
the rank plots than in the non-rank plots. This yields that the carbon production is more sensitive
and obviously experiences higher fluctuations. The non-rank plots assign a very low influence to
the first three parameters. However, the leaf-area in the rank-plot is considered to be much more
important. This is a very insightful finding and it shows that the leaf area is a complex biological
entity. The statement is also supported by the fact that the leaf area in connection with the carbon
production possesses the highest uncertainty reading, which can clearly be seen in both plots. In
the rank-plot the negative correlation value of the vitality threshold matches the findings from the
main and interaction effect plots. The correlation technique furthermore reveals that the beech’s
carbon production is again perceptibly influenced by the vitality, the number of light days, the
available light (PPFD_FACTOR) and the efficiency. Compared to the output parameter of the tree
height, the carbon production is more complex. Especially the rank plot for the carbon production
yields that the mutual parameter influence is a non-linear functional dependency. In summary,
it can be said that the findings on balance support the results that were obtained by the already
applied SA methods.

4.1.5 Standardized (Rank) Regression Coefficients

Figure 4.11: Results for the standardized regression coefficients of the beech tree’s height

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 65

Figure 4.12: Results for the standardized rank regression coefficients of the beech tree’s height

Figure 4.13: Results for the standardized regression coefficients of the beech tree’s carbon
production

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 66

Figure 4.14: Results for the standardized rank regression coefficients of the beech tree’s carbon
production

The figures 4.11, 4.13, 4.12 and 4.14 represent the standardized regression coefficients and their
rank versions for the examination of the beech’s height and the total carbon production. The
regression coefficients must be seen as importance measures for the different input parameters
concerning a single output.

It can be said for the tree height that when sorting the input parameter by their SRC reading, the
same order results when sorting the PCC. This holds true for both, the non-rank as well as the
rank plots. However, for the influential parameters the values reside in a lower range compared to
the PCC/PRCC. Concerning the importance, the last four parameters are considered to be
approximately equally important. Again, the lowest sensitivity and thus importance is assigned to
the branching angle and the vitality threshold.

For the carbon production the regression coefficients indicate a little less importance for the
available light (PPFD_FACTOR). In general, the deviation within the regression coefficients is
lower compared to the correlation coefficients. This holds true for the rank as well as the non-rank
version. Another interesting fact is that the uncertainty is for all parameters approximately
identical and resides in a relatively low range. Like for the tree height the SRC for the carbon
production assigns to the input of photosynthesis (PPFD_FACTOR) a lower sensitivity value
compared to the PCC. Nevertheless, the SRRC were not able to detect the negative influence of the

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 67

vitality threshold. In summary, the conclusion that can be drawn does not question the overall
parameter behavior, which is again confirmed: The last four parameters are the most important
ones.

4.1.6 Sobol’s Method

Figure 4.15: Results of Sobol’s method for the beech tree’s height

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 68

Figure 4.16: Results of Sobol’s method for the beech tree’s carbon production

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 69

In figures 4.15 and 4.16 the plots of the calculated Sobol effect indices of the tree height and the
carbon production can be found. Due to the enormous amount of samples required by Sobol’s
method, the highly-ranged runtime and the exponential number of interaction effects, it was
chosen to use the screening results from the previously applied SA methods to omit parameters
by their sensitivity namely to solely examine the most sensitive parameters regarding the specific
output. Because of that, the last four parameters from the table 4.1 will be examined.

A cirle in a plot coincides with the value of the effect index. The line right or left of a circle is the
attributed index’s uncertainty (95% confidence interval). In both plots (height and carbon) it can
clearly be seen that the uncertainty of the single main and interaction effects is on the high side.
However, this was exactly what was expected since the previously carried out SA have revealed
the interactions that take place. By that, in particular an individual main effect index must by the
laws of mathematics possess a high uncertainty. For the tree height again the vitality parameter
is the most influential one. The number of light days, the available light (PPFD_FACTOR) and
the efficiency reside in the range of approximately half the sensitivity index reading of the vitality.
Furthermore the uncertainty of these last three parameters also is nearly identical. It should again
be recalled that the sensitivity indices (main and interaction) sum up to one. Hence, a direct
parameter ranking and comparing is possible. In Sobol, interaction effects are binary relations.
Hence, the interacting of two parameters is expressed in a single interaction effect index. For
the tree height, interactions takes place though at a low level. The number of light days and the
available light (PPFD_FACTOR) as well as the efficiency and the input of photosynthesis hardly
interact. Nevertheless, the uncertainties of the interaction effect indices remain high.

For the carbon production the leaf area parameter was also examined, since a non-zero influence
can be expected when looking at the results of the already applied SA methods. Nevertheless, the
plot shows that the leaf area possesses the lowest influence on the carbon production compared to
all other examined parameters. Concerning the parameter with the highest sensitivity, the PCC
method was not able to clearly identify it since the readings’ deviations for the last four parameters
were not very high. Sobol’s indices assign the vitality parameter the most important contribution
to the amount of total carbon production. After the vitality, the sensitivity ranking is followed by
the available light (PPFD_FACTOR) and the efficiency. It is interesting to see that the uncertainty of
the main and interaction effects is distributed much more irregularly compared to the tree height
results. There is in particular a lower uncertainty for the interaction indices of parameters that do
not interact. An interaction of medium strength can be recognized between the light days and
the vitality and between the efficiency and the available light. The other calculated interaction
effect indices only possess an irrelevant value. This is very insightful because in the interaction
plot 4.6 on the extreme values a strong interaction was yielded. However, this finding reveals that
the interacting is highly non-linear. Additionally, it shows that the number of samples may need to
be increased in order to avoid wrongly assumed sensitivity that in reality comes from the output
deviation that is a byproduct of the model randomness.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 70

4.1.7 Extended Fourier Amplitude Sensitivity Test

Figure 4.17: Results for the extended Fourier amplitude sensitivity test of the beech tree’s height

Figure 4.18: Results for the extended Fourier amplitude sensitivity test of the beech tree’s carbon
production

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 71

In figures 4.17 and 4.18 the results for the extended Fourier amplitude sensitivity test (EFAST) can
be found. Sobol and EFAST calculate the same sensitivity indices. In the limit, when the number of
samples goes to infinity, the difference between a Sobol effect index and an EFAST effect index
converges to zero. In the plots the height of a white bar coincides with the main effect of a
parameter. The grey bar on top of every white bar is the summed up interaction effects where the
particular parameter is involved. Hence, the total parameter effect is the sum of the main effects
and the interaction effects. However, concerning the effect readings, EFAST does not show the
exactly same sensitivity values compared to Sobol. There are mainly two reasons for that. First of
all, EFAST indices are calculated with newly generated input parameter configurations (samples).
Thus, the data which is the base of calculations is completely different. By that, the mentioned
appearance of non-linear behavior also leads to fluctuations in output that can only be flattened
with a sufficiently high number of samples. Second of all, it is due to the variation that comes from
the model randomness itself. The variance could in particular be decreased by modifying the code
of the beech through decreasing but not fully setting to zero the variance of all random variables.
Another way could be given by increasing the number of model runs greatly, for example by a
factor of 10, namely from currently 100 to 1000.

For the tree height the vitality parameter is again considered as most influential. Contrary to Sobol,
the input of photosynthesis (PPFD_FACTOR) possesses the lowest sensitivity reading. The light
days and the efficiency approximately show the same values. These are the only differences
compared to Sobol due to the mentioned reasons. The height of the grey bars can be obtained by
the Sobol plot by adding up every interaction value where the particular parameter appears.
When doing so, EFAST confirms quite well the existing findings. Nevertheless, in the EFAST plot
it is not evident where the sensitivity contribution (from the interactions) comes from, since it
disappears in the sum.

The carbon production is most sensitive on the vitality parameter. The lowest influence is given by
the leaf area. These findings are consistent with the results of Sobol’s method. The other
parameters differ slightly. While the light days and the efficiency are considered to be equally
important, the input of photosynthesis is less sensitive for EFAST than for Sobol. However, the
confidence interval that appears in the Sobol plots yields that EFAST results are valid, since they
are within the expected range. The same holds true for the interaction effects, which are higher for
EFAST than for Sobol. Only the flattening of randomness and the increase in the number samples
can yield the desired convergence of the sensitivity indices.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 72

4.2 Assimilate Production Model

The assimilate production model is a plant model that was developed by Gerhard Buck-Sorlin
and Michael Henke. Its main focus is not situated in a structural context, but on the sophisticated
modeling of radiation and photosynthesis. The target function for the SA is the so-called net
photosynthetic rate. The speed at which a plant converts radiant energy into carbon products is
called rate of photosynthesis. However, plants loose matter through respiration and the loss of
leaves or other plant parts. Thus, the net photosynthetic rate considers the final carbon allocation
rate including gains and losses. For the examination five parameters were chosen for SA (see
table 4.3). Contrary to the beech model, the assimilate production model does not contain any
randomness. Therefore, the output can be directly used without any processing in between like
multiple function calls or averaging. As a side effect, the time consumption to carry out the
different methods is essentially lower compared to the beech. Since the output is generated by the
function that constitutes the simulation and because the model parameters are passed as variables
of that function, the adaptation of the model code in order to perform SA only consists of replacing
each input variable by a NumberRef version. The code of the model and the code for the SA can
be found on the supplementary CD. In order to increase the quality of information, the local
sensitivity analysis was done twice with different deviation values (±20% and ±50%).

parameter name description initial value variation range

TEMPERATURE The temperature of the ambient air is
given by the parameter TEMPERATURE.

25◦C 10 . . . 50◦C

PAR The amount of photosynthetically active
radiation is given by the parameter PAR.
This value indicates how much radiation
energy per area unit the light source
produces.

600 W
m2 100 . . . 1500 W

m2

AGE The age of the tree (in days) is set by the
parameter AGE.

100d 50 . . . 180d

CO2 The parameter CO2 holds the amount of
carbon dioxide in the plant’s ambient air.

400µmolmol 50 . . . 1500µmolmol

RELATIVE_
HUMIDITY

The water content in the air is given by
the parameter RELATIVE_HUMIDITY.

75% 10 . . . 100%

Table 4.3: Overview of the examined assimilate production model input parameters

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 73

4.2.1 Local Sensitivity Analysis

parameter value net photosynthetic rate
(±20% deviation)

net photosynthetic rate
(±50% deviation)

TEMPERATURE_min -14.61 -37.92
TEMPERATURE_max -16.12 -43.19
PAR_min -4.04 -15.23
PAR_max 2.88 3.46
AGE_min 18.18 48.98
AGE_max -16.02 -37.28
CO2_min -12.86 -45.76
CO2_max 5.89 12.27
RELATIVE_HUMIDITY_min -1.97 -5.41
RELATIVE_HUMIDITY_max 1.96 3.25 (+33% deviation)

Table 4.4: Results for the local sensitivity analysis of the net photosynthetic rate of the assimilate
production model

The table 4.4 shows the results of the local sensitivity analysis for ±20% and ±50% deviation. It
must be noted that the relative humidity cannot exceed 100%. Hence, for the maximum value the
deviation is 33% instead of 50%. For the first test, the overall difference in output (absolute value)
does not exceed approximately 18% and for the second test 49%. Relatively low sensitivity was
found in both experiments for the light intensity (PAR) and the humidity. The air temperature, the
CO2 value as well as the age possess high sensitivity values. It is interesting to see that for both
extreme values of the temperature (colder and hotter), the net photosynthetic rate is noticeably
decreased. Hence, the assimilate production model very precisely reproduces the biological
behavior that plants do not grow well (do photosynthesis) when it is too cold or too hot.

Concerning the highest sensitivity, the age parameter is the most influential one. One can conclude
that the plant in a younger state performs more photosynthesis than in an older state, meaning
that the net rate is slowly decreasing over time. It is also compliant with biology that the
photosynthesis is heavily reduced when the amount of carbon dioxide is too low. This can clearly
be seen as the net photosynthetic rate is decreased by approximately 46% when the CO2
concentration of the air is cut in half. Furthermore the data clearly shows that a plant can only use
a fraction of the incoming light. When looking at the output’s behavior regarding the PAR value, a
reduction of the initial reading by 50% leads to a decrease of the net photosynthetic rate by
approximately 15%, whilst an increase of the same amount only leads to a minor increase of
approximately 3.5%.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 74

All in all, it is again shown that a local sensitivity analysis - which is the most simple approach of
all considered SA methods - can reveal insightful model behavior. At the moment, the plausible
readings that are compliant with biology can support the validity of the assimilate production
model. However, it should be noted again that interaction effects are not obtained yet.
Nevertheless, the sensitivity values for the different parameters make clear that especially from
the temperature, the age and the CO2 concentration the most essential influence can be expected.

4.2.2 Morris’s Elementary Effects Screening

Figure 4.19: Results of Morris’s elementary effects screening for the net photosynthetic rate of the
assimilate production model

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 75

In the figure 4.19 the elementary effect readings can be found for each test parameter. A first look
initially reveals that the parameters are divided into two groups of different sensitivity: low and
high. The relative humidity and the light strength (PAR) belong to the low sensitivity parameters
regarding the net photosynthetic rate. It is interesting to see that the effect values very precisely
confirm the findings made with the local SA. However, the Morris plot is a statistical analysis of
the elementary effects. To every parameter two values are assigned: the effects’ mean and
standard deviation. The mean delivers the information about the effect strength and the deviation
about possible non-linear effects as well as interaction effects. Nevertheless, it should be recalled
that the Morris method belongs to the OAT-class of SA methods, hence interactions are not directly
examined. The standard deviation can just give a hint what further SA approaches can expect
regarding the amount of interaction effects, when using this value as a parameter ranking
indicator.

The plot shows that the effect of the light parameter (PAR) possesses slightly more fluctuations
compared to the humidity. This could indicate that the light parameter (PAR) is more likely to
interact with other parameters or to produce the output’s non-linearity. The group of parameters
with a high sensitivity consists of the age, the CO2 concentration and the temperature. The most
influential parameter for the net photosynthetic rate is the CO2 concentration. This is a difference
to the results of the local sensitivity analysis where the age parameter possessed the highest
output deviation. The Morris plot admittedly shows that the temperature has a higher standard
deviation than the age, but it also reveals a disadvantage of the Morris method: the direction of an
effect cannot be seen in contrast to the local SA. This is especially important for the temperature
parameter, since the local SA yielded that low and high temperatures were greatly reducing the
net photosynthetic rate. In conclusion, the results from the local SA are on balance confirmed.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 76

4.2.3 Main And Interaction Effects On Extreme Values

Figure 4.20: Results for main effects on extreme values of the net photosynthetic rate of the
assimilate production model

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 77

Figure 4.21: Results for interaction effects on extreme values of the net photosynthetic rate of the
assimilate production model

The main and interaction effects plots on the extreme values of the input parameters can be found
in figures 4.20 and 4.21. In the main effect plot it clearly can be seen that the results of the local SA
and Morris’s screening can be recognized. The curve of the light parameter (PAR) and the
humidity have the lowest slope and height. The humidity parameter curve is very flat compared
to the others. The only positive influence on the net photosynthetic rate is yielded by the CO2
concentration and the light parameter (PAR). Concerning the strength of the effects, the plot

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 78

confirms the findings from the Morris plots very well: the CO2 concentration is most influential on
the net photosynthetic rate followed by the age and temperature. Additionally, the main effect plot
reveals the signs of the effects that were before only obtained through a combination of the local
SA and Morris’s elementary effects.

The interaction plot can be considered as very insightful. The first thing noticable is the minor
influence of the relative humidity. There is no interaction with the light parameter (PAR) or the
age. However, the humidity slightly interacts with the temperature and the CO2 concentration.
When the humidity is at its minimum the decrease of the net photosynthetic rate along the
temperature is flatter, however it starts from a lower point. For the maximum CO2 concentration it
holds true that when the humidity is at the minimum the maximum net photosynthetic rate is
higher, whereas when the CO2 concentration is minimal a low humidity is disadvantageous for
the net photosynthetic rate.

The light parameter (PAR) interacts with all other parameters except the humidity. For all curves it
is visible that for the maximal light intensity the curve for the net photosynthetic rate is well above
the minimum curve. Nevertheless, the effect is decreasing when PAR interacts with the
temperature and the age parameter. A positive synergistic effect can be recognized with the CO2
concentration. When both readings are at their maximum the net photosynthetic rate is
considerably increased.

An essential interaction can be seen for the temperature parameter. It interacts with all other input
parameters. It is insightful to see that when the temperature is too high, the net photosynthetic
rate is considerably reduced compared to the lower temperature. A positive effect on the net
photosynthetic rate can be seen for the interaction of the lower temperature with the light
parameter (PAR) and for the CO2 concentration.

Considering the amount of influence, the age parameter is as sensitive as the temperature.
Furthermore, the behavior of both parameters is overall comparable. It interacts with all other
parameters, except the humidity. A young tree does more photosynthesis than an old one. This
can clearly be read off the interaction plots. This dependency is most affected when looking at the
interaction of the age and the CO2 concentration. For the parameter configuration where a high
CO2 concentration is found, the net photosynthetic rate of a young tree is at its maximum.

The most influential parameter is the CO2 concentration. Here, the biggest gap between the
minimum and maximum curves can be found. A positive interaction where both parameters
contribute to the net photosynthetic rate can be recognized for the light intensity parameter (PAR).
Summarizing, it must be said that the interaction plots are very good revealing initially hidden
model behavior. Furthermore, the results of the already applied SA methods are greatly supported.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 79

Compared to the beech model, the results of the assimilate production model are up to now
consistent along the different methods and thus unambiguous. The main reason for that finding is
given by the stochasticity of the beech model in contrast to the predetermination of the assimilate
production model behavior.

4.2.4 Partial (Rank) Correlation Coefficients

Figure 4.22: Results for the partial correlation coefficients of the net photosynthetic rate of the
assimilate production model

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 80

Figure 4.23: Results for the partial rank correlation coefficients of the net photosynthetic rate of the
assimilate production model

The figures 4.22 and 4.23 are the plots that show the graphical representation of the calculated
partial correlation coefficients and their rank versions. The first insight is given by the fact that
the PCC and PRCC plots are approximately identical. This proves that the influence of the input
parameters is consistent by the means of monotonic behavior. In contrast to the beech tree, two
PCC and PRCC values of the assimilate production model input parameters possess negative signs.
This holds true for the temperature as well as the age parameter. It is insightful to recognize than
the negative influence on the net photosynthetic rate of these two parameters is compliant with
the sensitivity readings of all other applied SA methods. Especially the main and interaction plots
revealed the decrease of the net photosynthetic rate with rising temperature or age. Another main
observation is given by the circumstance that the confidence interval (uncertainty) for each input
parameter is very narrow and resides much lower compared to the beech’s parameters. This is due

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 81

to the fact that the assimilate production model does not contain any randomness. Furthermore
the low uncertainty indicates that there is a sufficiently large sample base for the sensitivity
calculations. Concerning the most important positive influence on the net photosynthetic rate,
the CO2 concentration parameter can be considered as the most important one. A relatively low
reading and thus low importance is again assigned to the humidity. The relatively high but negative
dependency between the age or temperature and the net photosynthetic rate - hence decreasing
photosynthesis with higher age or temperatures - can again be derived from the negative PCC
and PRCC readings. The intensity of the light (PAR) has only mediocre influence on the net
photosynthetic rate. However, the fact that the absolute values of all correlation measures are well
below 1.0 indicates that there is a non-linear relationship between the input and output parameters.
Finally it must be said that the PCC and PRCC methods support the findings of the model behavior
examined with the local SA, Morris’s method and the main and interaction effects.

4.2.5 Standardized (Rank) Regression Coefficients

Figure 4.24: Results for the standardized regression coefficients of the net photosynthetic rate of
the assimilate production model

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 82

Figure 4.25: Results for the standardized rank regression coefficients of the net photosynthetic rate
of the assimilate production model

The plots of the standardized regression coefficients and the rank version for the assimilate
production model can be found in figures 4.24 and 4.25. Like for the PCC and PRCC plots, the plots
for SRC and SRRC approximately show the same sensitivity values for each input parameter. Only
a slight difference can be seen in the rank version where the temperature and the age parameter
possess non-essentially higher sensitivity values. However, the difference is so small that the
ranking of the parameters remains unchanged. The calculated coefficients do not reveal any new
finding. They are quite consistent with the PCC and PRCC readings. Nevertheless, it should be
recalled that both SA methods address different objectives. The SRC/SRRC are used as relative
importance measures (result of a regression) and the PCC/PRCC as correlation measures. It is
insightful to experience that here the importance approximately coincides with the correlation,
which underlines the model behavior consistency along all applied SA methods.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 83

4.2.6 Sobol’s Method

Figure 4.26: Results of Sobol’s method for the net photosynthetic rate of the assimilate production
model

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 84

A visual representation of the main and interaction effect indices that are obtained by Sobol’s
method can be found in figure 4.26. The first thing observable is the fact that the uncertainty is
evenly distributed and resides relatively high. This is a big contrast to the PCC/PRCC and
SRC/SRRC values where the uncertainty was very low. Nevertheless, when looking at the main
effect indices, a clear division between the influential parameters (temperature, CO2 concentration,
age) and the non-influential ones (PAR, relative humidity) can be recognized. However, the
ranking of input parameters is slightly different to the consistent findings from all other applied
SA methods. The age parameter is the most important one regarding the net photosynthetic rate,
then followed by the temperature and the CO2 concentration. Notwithstanding, it holds true that
the differences between the main effect indices of the important input parameters are low and do
not exceed approximately 0.05. Furthermore, the 95%-confidence intervals (uncertainty) of these
parameters make clear that also the ranking revealed by the other SA methods is possible with a
high probability.

Concerning the interaction effect indices, Sobol’s method shows slight interactions for all binary
parameter relations. However, the uncertainty is very high. In order to reveal a clear model
behavior considering interactions would require indices less prone to error. This can only be
achieved with a higher number of samples. Nevertheless, when looking at the actual Sobol
interaction indices, the relative humidity possesses the least influence on the net photosynthetic
rate. All interaction readings are well below 0.1, which underscores the minor significance of this
parameter. In total, the CO2 concentration interacts the most. However, the difference to the other
parameters, for example the temperature, is not very high.

All in all, the interpretation of the interaction indices is difficult due to the mentioned uncertainty
and the relatively even index distribution. Leastwise, Sobol’s method was able to clearly separate
the input parameters by their main effect. Anyway, this finding is compliant to the results from the
applied SA methods. The drawback of Sobol by the means of requiring a tremendous amount of
data in order to produce reasonable measures, is supplied evidence.

CHAPTER 4. SENSITIVITY ANALYSIS OF PLANT MODELS 85

4.2.7 Extended Fourier Amplitude Sensitivity Test

Figure 4.27: Results for the extended Fourier amplitude sensitivity test of the net photosynthetic
rate of the assimilate production model

In figure 4.27 the results of the extended Fourier amplitude sensitivity test can be found. The low
influence on the net photosynthetic rate can be again seen for the light intensity (PAR) and the
relative humidity. The main effect on the photosynthesis of the humidity is considered so low
that the white bar representing the sensitivity index can only be seen when zoomed in. However,
the interaction of the humidity is non-zero. This confirms the findings of Sobol’s method. When
looking at the ranking of the most important input parameters, the results from the first five SA
methods are greatly confirmed. The CO2 concentration is the most influential one, followed by
the age and the temperature. The EFAST results are more accurate and compliant with all other
SA methods, except Sobol’s approach. This is especially true due to the reason that EFAST effect
indices possess a higher convergence rate than Sobol for the same number of samples. Interaction
effects occur for each input parameter, which was expected as Sobol has shown non-zero effects for
all parameters. However for the most influential parameters (CO2 concentration, age, temperature)
the amount of interaction effect does not exceed approximately 30% of the particular main effect.
Recapitulating the results, it is evident that the calculated effect indices support the present
outcomes of the applied SA methods. With the exception of Sobol’s method, where the results
where slightly deviating, the consistency of the findings emerges.

Chapter 5

Runtime and Memory Consumption

In this chapter the runtime and memory consumption of the "Sensitivity" plugin is examined.
Since for the plugin user the only available functions are the implemented sensitivity analysis
functions, each of them will be tested separately. The main insight is yielded by the dependency of
the runtime and memory consumption on the number of input parameters. The tests were carried
out using the binary tree model from the transformation example of chapter 2. The test code can be
found on the supplementary CD. Due to the fact that in Java the full CPU time of a thread cannot
be easily yielded with out-of-the-box methods, the runtime of an SA method is obtained by the
function nanoTime(). Before a method is tested, nanoTime() is called and the return value is stored.
When the SA method terminates, the value of nanoTime() is again stored. The difference of the two
values is the runtime in nanoseconds of the SA function. However, it cannot be guaranteed that no
context switch occurs within the CPU scheduler. This results in unreliable and non-reproducible
runtime readings. In order to compensate this drawback, the runtime measurements are repeated
100 times (tradeoff between runtime and variance). Then the minimum value of the measurements
is taken, because it can be assumed that for the minimal runtime the least number of scheduler
interruptions occurs and thus the most accurate measurement is achieved. Figure 5.1 shows the
fluctuations of the runtime along the test runs for the partial correlation coefficients where the
number of input parameters is four. It can clearly be seen that the values are within a small
corridor of approximately 0.7s width. However, along the simulations the runtime several times
approaches its minimum which will be used as the measured runtime reading. The test machine
for all measurements is a Dell Vostro 5590 / CPU: Intel i7-10510U / RAM: 16GB.

The examination of the memory consumption requires more attention. The memory usage can be
divided into a Java part and an R part. For the Java part it is not trivial to measure the memory
consumption because the memory management and garbage collection are internal mechanisms of
Java and hence largely inaccessible for the programmer. However, the Java part is a fixed code
layout and is seen only as a frame for the R calculations. Since it always possesses a constant
memory usage and all the sensitivity calculations are done in the R process, the Java part can be

86

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 87

neglected. In other words, measuring the memory consumption of the Java part cannot give
insight to the memory behavior of the SA methods, which is the examination target. Furthermore,
the visual representation of the sensitivity plots is also carried out using R. Because of these facts,
it was decided to only examine the memory occupancy of the R process. In order to measure the
memory consumption of the SA methods, R offers the function mem_used() from the package
"pryr" [34] that outputs the total occupied system memory. Unfortunately, R also incorporates
inaccessible garbage collection. To avoid false measurements and in order to obtain a reasonable
memory value, the internal function of the "Sensitivity" plugin eval() was temporarily altered in a
way that in every execution step of the R command sequence the used memory was outputted to
the command line. The output lines then were used to obtain the maximal memory consumption
reading. This reading then is subtracted from the initial memory consumption of the R system.
This procedure guarantees that the true value for each SA function is gathered. In table 5.1 the
runtime and memory consumption measurements can be found. Additionally, the findings
including a visual representation via bar plots can be seen in tables 5.2 - 5.8. In order to make the
differences in memory allocation visible, these bars do not start at 0. Figures 5.2 and 5.3 show in a
comparative manner the runtime and memory consumption when the number of parameters is 6.

Having obtained the runtime and memory consumption, these entities are related to the quality of
information for each SA method. In other words, for the different functions a cost-benefit analysis
is conducted. For this task, the paper [17] provides a rough categorization of the different SA
approaches. However, for this chapter it was chosen to develop steadfast criteria in order to
individually assign assessment readings. The sum of points each method achieves represents a
dimension-less indicator for the quality of information. The runtime and memory consumption
can be related to the information quality resulting in an efficiency indicator. Thus, the SA methods
can be compared considering that property. The table 5.9 shows the corresponding results.

Figure 5.1: Deviation of the runtime for PCC with 4 parameters

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 88

se
ns

it
iv

it
y

an
al

ys
is

m
et

ho
d

nu
m

be
r

of
pa

ra
m

et
er

s
2

3
4

5
6

Lo
ca

lS
en

si
ti

vi
ty

A
na

ly
si

s
ru

nt
im

e
[s

]
1.

49
2

1.
63

9
1.

76
7

1.
89

9
2.

02
2

m
em

or
y

co
ns

um
pt

io
n

[b
yt

e]
23

06
30

4
24

33
59

2
25

61
30

4
26

88
83

2
28

15
68

0

M
or

ri
s’

s
El

em
en

ta
ry

Ef
fe

ct
s

Sc
re

en
in

g
ru

nt
im

e
[s

]
3.

22
4

3.
95

2
4.

69
7

5.
34

9
6.

05
6

m
em

or
y

co
ns

um
pt

io
n

[b
yt

e]
10

18
55

04
10

18
61

60
10

18
65

92
10

18
74

88
10

18
79

52

M
ai

n
A

nd
In

te
ra

ct
io

n
Ef

fe
ct

s
O

n
Ex

tr
em

e
V

al
ue

s
ru

nt
im

e
[s

]
1.

57
9

1.
84

2
2.

34
0

3.
23

4
5.

03
3

m
em

or
y

co
ns

um
pt

io
n

[b
yt

e]
15

84
39

20
15

89
75

44
15

95
15

36
16

02
04

32
16

11
60

16

Pa
rt

ia
l(

R
an

k)
C

or
re

la
ti

on
C

oe
ffi

ci
en

ts
ru

nt
im

e
[s

]
14

.0
90

22
.9

29
34

.0
96

48
.0

28
64

.5
02

m
em

or
y

co
ns

um
pt

io
n

[b
yt

e]
68

20
56

0
68

34
58

4
68

50
14

4
68

67
88

8
68

80
77

6

St
an

da
rd

iz
ed

(R
an

k)
R

eg
re

ss
io

n
C

oe
ffi

ci
en

ts
ru

nt
im

e
[s

]
12

.1
57

17
.7

47
23

.4
32

29
.1

98
35

.0
93

m
em

or
y

co
ns

um
pt

io
n

[b
yt

e]
65

75
50

4
65

89
52

8
66

05
08

8
66

22
83

2
66

35
72

0

So
bo

l’s
M

et
ho

d
ru

nt
im

e
[s

]
42

.3
35

10
9.

16
3

22
8.

15
5

41
6.

18
5

69
7.

45
4

m
em

or
y

co
ns

um
pt

io
n

[b
yt

e]
63

08
51

2
63

71
70

4
65

03
39

2
67

41
79

2
71

38
64

8

Ex
te

nd
ed

Fo
ur

ie
r

A
m

pl
it

ud
e

Se
ns

it
iv

it
y

Te
st

ru
nt

im
e

[s
]

21
.8

97
47

.7
95

83
.5

04
13

0.
03

6
18

6.
89

9
m

em
or

y
co

ns
um

pt
io

n
[b

yt
e]

56
93

98
4

57
16

05
6

57
53

55
2

58
12

24
8

58
97

20
0

Ta
bl

e
5.

1:
R

un
ti

m
e

an
d

m
em

or
y

co
ns

um
pt

io
n

m
ea

su
re

m
en

ts

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 89

Examination Comment

Runtime

The plot clearly shows that
the runtime of the local SA
is in a linear dependency of
the number of parameters.
This is the behavior that
was expected, since two
simulation runs (on the
minimum and maximum)
for each parameter need to
be carried out to calculate
the effect values. The slope
of the curve is relatively flat.
For 6 instead of 2 parameters
the increase in computation
time is only ≈ 0.5s.

Memory consumption

Again, a linear increase
can be recognized, thus
a linear need of memory
with a higher number of
parameters. A number of
6 examination parameters
approximately requires
500kB more memory than
two parameters. The main
contribution is given by the
graphical representation
of the plot. However, the
overall consumption is the
lowest of all SA methods.

Table 5.2: Runtime and memory consumption of the local sensitivity analysis

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 90

Examination Comment

Runtime

For the Morris method a linear
time consumption was expected,
since for every parameter a fixed
number of so-called elementary
effects are calculated. Thus, a
linear increase of the number of
parameters must induce a linear
runtime requirement. Morris’s
elementary effects screening is
approximately three times slower
than the local SA. Nevertheless,
a tripling of the number of
parameters only leads to less than
double the amount of runtime.

Memory consumption

A fixed number of calculated
elementary effects and thus
model runs also induces
a corresponding memory
demand. Hence, a linear
dependency on the number
of parameters is yielded. The
overall memory consumption
resides approximately 4 times
higher than for the local SA. The
data also reveals, that a main
contribution to the memory
consumption is due to the
graphical representation of the
sensitivity results, since the
overall difference is low.

Table 5.3: Runtime and memory consumption of Morris’s elementary effects screening

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 91

Examination Comment

Runtime

The dependency for the runtime
of the main and interaction
effects method is considered to
be non-linear. The plot very well
confirms this fact. Especially
the jump from 5 to 6 parameters
shows the substantial increase in
calculation time. However, this
is due to the fact that an extra
parameter requires calculating its
main effect and additionally the
binary interaction with all other
parameters. Thus, a quadratic
dependency is supposed.

Memory consumption

The absolute values of the
memory consumption make
it difficult to recognize the
quadratic dependency. However,
when looking at the differences
in memory consumption along
the number of parameters, it is
clear that the need for memory
increases non-linearly. From all
examined methods the main and
interaction effects possess the
highest memory requirements.
The major reason is given by
the fact that the plots are the
most compartmentalized and
sophisticated ones.

Table 5.4: Runtime and memory consumption of the main and interaction effects on extreme values

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 92

Examination Comment

Runtime

The runtime of the partial
correlation coefficients is non-
linear, since a correlation value
is calculated for every 2-tuple of
parameters. Then a regression
on the output is carried out
using the correlation readings.
The plot also shows that the
runtime considerably increases
with the number of parameters.
For example a tripling of the
number of parameter from 2 to
6 increases the runtime about
≈ 450%. In general the
runtime resides ≈ 10 times
higher compared to the already
examined SA methods.

Memory consumption

The behavior of the memory
consumption of the PCC/PRCC
method on balance corresponds
to the evolution of the runtime.
Compared to the other methods,
the PCC/PRCC method
possesses a mediocre memory
requirement. It needs for
example at least 3 times more
memory than the local SA and
only 40% of the memory of the
main and interaction effects.

Table 5.5: Runtime and memory consumption of the partial (rank) correlation coefficients
(PCC/PRCC)

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 93

Examination Comment

Runtime

The calculation of the
SRC/SRRC requires to solve a
linear equation system. Thus,
one would expect at least a
quadratic dependency on the
number of parameters since
the quadratic regression matrix
grows in the number of rows
and columns. However, the
runtime measurements cannot
clearly yield this behavior. In
fact the data exhibits a linear
relationship. This reveals that
the range of the number of
parameters is assumably too low
to show the quadratic evolution
of the runtime.

Memory consumption

It is interesting to see that the
memory consumption of the
SRC/SRRC method in its extent
is comparable to PCC/PRCC
approach, since the runtime
of the SRC/SRRC is only half
as high. For a tripling of
the number of parameters an
increase in memory occupancy
of approximately 60kB can be
recognized. In comparison
with the other SA methods, the
SRC/SRRC technique utilizes
approximately 2.5 time more
memory than the local SA,
and about 3.6% less than the
PCC/PRCC.

Table 5.6: Runtime and memory consumption of the standardized (rank) regression coefficients
(SRC/SRRC)

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 94

Examination Comment

Runtime

The plot for the runtime of Sobol’s
method very well illustrates
the non-linear dependency of
the runtime on the number of
parameters. The overall amount
of runtime resides vastly higher
compared to all other SA methods.
This behavior is due to the number
of samples Sobol’s method is
obligated to create in order to
achieve reasonable readings of
the effect indices. Additionally,
the different orders of the indices
considering main and interaction
effects (first-order, higher-order)
lead to a multiplicative effort with
rising number of parameters.

Memory consumption

The memory consumption
approximately shows the same
behavior than the runtime.
Especially the difference in
memory consumption when
the number of parameters is
increased from 5 to 6 underlines
the non-linearity that is caused
by the reasons mentioned in the
runtime section. It is insightful
that the data yield that for Sobol
the memory consumption is
only about 3.7% higher than
for the PCC/PRCC method (6
parameters). Compared to the
main and interaction effects on
extreme values Sobol’s method
only uses ≈ 44% of the memory.

Table 5.7: Runtime and memory consumption of Sobol’s method

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 95

Examination Comment

Runtime

The extended Fourier amplitude
sensitivity test (EFAST) is much
faster than Sobol’s method.
This can clearly be seen from
the runtime plot. This fact is
especially important because
Sobol and EFAST internally
calculate the same effect indices.
However, since EFAST utilizes
the Fourier decomposition the
convergence rate is substantially
higher. Thus, the runtime
speeds up correspondingly. The
non-linearity is endorsed by the
finding that when tripling the
number of parameters from 2 to
6 the runtime is about 8.5 times
higher.

Memory consumption

The increase of memory
occupancy with a rising
number of parameters can
be found in the plot for the
memory consumption of EFAST.
In particular, the increase in
memory when the number of
parameters is changed from
5 to 6 makes clear that the
requirement for memory climbs
non-linearly. Another important
result is the fact that the overall
memory consumption resides
in a low range. For example the
need is approximately 18% less
than for Sobol’s method and
about 12% less than SRC/SRRC.

Table 5.8: Runtime and memory consumption of the extended Fourier amplitude sensitivity test
(EFAST)

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 96

Figure 5.2: Comparison of the runtime for the sensitivity analysis methods

Figure 5.3: Comparison of the memory consumption for the sensitivity analysis methods

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 97

Criterion LSA MORRIS MAIE P(R)CC S(R)RC SOBOL EFAST

Main effect 1 2 2 2 2 3 3

Interaction effects 0 0 2 0 0 3 2

Effect direction 2 0 3 2 2 0 0

Effect height relative 2 2 0 3 3 3 3

Effect height absolute 0 0 3 0 0 0 0

Input space coverage 1 2 2 3 3 3 3

Reading robustness 0 1 1 2 2 3 3

Uncertainty evaluation 0 0 0 3 3 3 0

Sum (=information) 6 7 13 15 15 18 14

Runtime efficiency
(= information×s

runtime)
2.97 1.16 2.58 0.23 0.43 0.026 0.075

Memory efficiency

(= 106×information×byte
memory consumption)

2.13 0.69 0.81 2.18 2.26 2.52 2.37

Table 5.9: Information quality assessment of the sensitivity analysis methods

The table 5.9 shows the assessment of the different SA methods considering information quality.
For every criterion an assessment value from 0 . . . 3 indicates the goodness of the particular SA
method. A value of 0 accords to the fact that no information is delivered on that criterion. For
values from 1 . . . 3 the depth of the information is assessed, where 3 coincides with the best
possible reading. The dimension-less information value then is related to the runtime and memory
consumption by the division formula given in the cell entry. This yields a dimension-less efficiency
indicator for the runtime and the memory consumption.

The table clearly shows that Sobol’s method reveals the deepest information on parameter
sensitivity. Also the PCC/PRCC and SRC/SRRC approaches give good insight in parameter
behavior. As expected, the local SA and Morris’s method can be seen as methods that give a hint
which parameters should be examined further, but cannot deliver deep information on parameter
sensitivity. The main and interaction effects on extreme values are advantageous for estimating the
direction of a parameter effect and its absolute effect height (model output on minimum and
maximum input parameters). All other methods only output readings that are suitable for
parameter ranking or comparison, since they deliver effect indices that are standardised on 1 or
percentage deviation values like the local SA, but no nominal output evaluation. Despite the fact
that Sobol and EFAST calculate the same effect indices, the assessment considers the user

CHAPTER 5. RUNTIME AND MEMORY CONSUMPTION 98

representation of the calculations. Hence, the differences in graphical illustration for example yield
that for EFAST the interaction effect contribution cannot be attributed to a single input parameter,
because all interaction indices are summed up. Because of that EFAST possesses a lower
assessment reading than Sobol. When looking at the informative entity of the sensitivity measure
validity, an uncertainty range is only provided for Sobol’s effect indices and the PCC/PRCC and
SRC/SRRC. Since many plant models contain randomness, the output often deviates slightly.
Thus, sensitivity values possess a certain degree of robustness, with the manner that calculations
are stabilized by carrying out repeated experiments. The local SA and the main and interaction
effects only conduct examinations on fixed input parameter configurations. Thus, in case of output
fluctuations the obtained values are not reliable unless the user averages the output over
simulation runs with an identical parameter setting, which was for example done for the beech
tree.

Considering the runtime efficiency, the methods that deliver the highest amount of sensitivity
information are the slowest ones. This group consists of the PCC/PRCC, SRC/SRRC, Sobol’s
method and EFAST. All efficiency values are well below 0.5. In particular Sobol is largely
time-consuming. Thus, the efficiency is the lowest of all SA approaches. Also EFAST, which is
more than 3 times faster than Sobol, possesses a relatively low runtime efficiency reading. A
balanced ratio of runtime versus information is yielded by PCC/PRCC and SRC/SRRC. The
assessment rating of these methods is high while requiring an acceptable runtime effort. The most
runtime efficient approaches are the local SA and the main and interaction effects on extreme
values. That is why it is preferable to initially screen the input parameters with these methods to
omit non-sensitive parameters before ever applying more profound techniques like Sobol. This is
especially important when the number of parameters is very high, since the deeper methods have
non-linear runtimes. Because of that, the runtime efficiency will drop correspondingly with an
increasing number of parameters. A mediocre runtime efficiency was found for Morris’s
elementary effects screening. Nevertheless, in contrast to Sobol or EFAST the runtime of Morris’s
method is reasonable and the yielded parameter screening is very useful for the further analysis
proceeding.

The memory efficiency for most methods shows the opposite to the runtime efficiency. In
particular the PCC/PRCC, SRC/SRRC, Sobol’s method and EFAST possess high efficiency reading
of approximately the same magnitude. This yields that the methods that have high runtimes on
the other side very economically utilize the memory. The local SA also is relatively low on
memory consumption, since only a fixed and low number of samples needs to be calculated and
stored. Thus, the efficiency reading is high. The most insightful result is given by the fact that
Morris’s method and the main and interaction effects - that belonged on balance to the runtime
efficient methods - are inefficient in terms of memory consumption. However, this is mainly
caused by the plots that incorporate different R packages which vary in their memory utilization.

Chapter 6

Summary and Outlook

This master thesis deals with the development and implementation of a plugin for the growth
grammar related interactive modeling platform GroIMP that deploys sensitivity analysis of plant
models through the utilization of the statistical computing software R. In chapter 1 an introduction
to the field of sensitivity analysis is given. Additionally, it is described why there is a need for the
sensitivity analysis capability of plant models within GroIMP. In chapter 2 implementation details
of the developed plugin are provided. In particular, it is shown how to connect R to GroIMP.
Furthermore, it is presented what the single entities of the plugin framework are and how a plant
model must be prepared in order to apply SA methods to it. In chapter 3 for all implemented SA
approaches the mathematical foundation is exposed. This includes how the concrete calculation of
the sensitivity measures - that are outcomes of the SA methods - is conducted (effect indices,
correlation/regression values, deviation readings). In chapter 4 the plugin is tested with two
existing plant models, where respectively a selection of the input parameter space is examined by
every single SA function deployed. On the one hand a beech tree is explored considering two
outputs, namely the total carbon production and the tree height. On the other hand an assimilate
production model is analyzed regarding the net photosynthetic rate. In chapter 5 the runtime and
the memory consumption of the SA methods are examined. Additionally, an assessment of quality
of information is done for all SA methods. These findings then are related to one another resulting
in individual efficiency evaluations.

Sensitivity analysis of simulation models examines input parameters in terms of their influence on
a dedicated output. Hence, for computer plant models it is of particular interest to study the
model behavior, since the complexity of biological processes is high. Thus, in order to understand
the connection between input and output, to check the model validity or to rank parameters by
their importance, advanced sensitivity analysis techniques are desirable especially for plant
models within plant modeling software. The Java-based 3D plant modeling platform GroIMP in
its version 1.6 does not incorporate any automatically conducted systematic sensitivity analysis
capability. Since the statical computing platform R possesses various sensitivity analysis functions

99

CHAPTER 6. SUMMARY AND OUTLOOK 100

that output the desired sensitivity measures, when sufficient simulation data is provided, it is very
beneficial to apply the sensitivity analysis of R to the plant models of GroIMP, which was the
motivation for this thesis. The task was done by implementing a GroIMP plugin - since all
functionalities of GroIMP are arranged via plugins - named "Sensitivity". The paper reference [17]
gives a hint which SA approaches within R are useful. Thus, the plugin possesses seven
user-accessible SA functions which are implementations of the following SA methods: local
sensitivity analysis, Morris’s elementary effects screening, main and interaction effects on extreme
values, partial (rank) correlation coefficients, standardized (rank) regression coefficients, Sobol’s
method and extended Fourier amplitude sensitivity test. In order to ensure user-friendliness and
comparability, it is predetermined for the developed plugin that the fraction of the input space,
whose sensitivity is meant to be examined, is an array of arbitrary length and must contain only
one-dimensional and numeric-valued model parameters. Furthermore, the SA methods require
that the output is a single, one-dimensional, numeric-valued reading.

GroIMP is based on Java. Hence, the "Sensitivity" plugin is also written in Java. Since it was
decided to use R in order to conduct SA analysis, it is mandatory to connect both computing
languages in order to execute commands or to transfer simulation data. However, there is no
out-of-the-box approach within Java programs to make the R language interpretable, due to the
complete difference in paradigms and programming framework. Nevertheless, there are Java
plugins available that deploy the R language in the Java environment. But it was found that those
do not suit the platform-independence of GroIMP, since they come along with a lot of
disadvantages like Java-version requirements, incomplete R deployment (missing R packages) or
OS-problems. Because of that, the connection of R and Java was carried out by developing a
communication framework based on process communication (reading and writing of process
streams). The internal and thus user-inaccessible class "RConnection" treats all tasks that are
necessary in order to establish a connection to R, to execute R commands and to preprocess their
return values. This also includes platform-different ways of proceeding, for example in obtaining
the R executable or opening plot windows. It is also tested whether all R packages, that are a
prerequisite for performing SA, are installed. If R is not installed or a package is missing, a
message will indicate which steps need to be taken by the plugin user. Since in GroIMP a plant
simulation most commonly consists of multiple functional parts and the naming of the
corresponding functions or program routines can be arbitrary, a concrete identification of the
simulation routine, the output measurement and the output name is crucially important. That is
why the developed interface "Simulation" contains dummy functions that must be correctly
overwritten by the plugin user. By that, the SA functions are able to systematically vary the input
parameters (according to the configuration required by the SA procedure), run the simulation
process and gather the dedicated output. At the beginning it was predetermined that a model
parameter is a one-dimensional, numeric-valued variable. In Java the natural choice for such
parameters would be primitive datatypes like int, long, double or float. However, if in a call of an SA

CHAPTER 6. SUMMARY AND OUTLOOK 101

function the input parameters were passed by value, which is in Java the case for primitive
datatypes, a systematic varying of the parameters within the function would be impossible.
Because of that, to create reference type input parameters, the developed wrapper class
"NumberRef" can hold any value of a number datatype and contains getter and setter for all of
them. Thus, the process of boxing and unboxing in order to pass value-type variables as
references, is done by the use of the tailored class "NumberRef". The need of the "Simulation"
interface and the "NumberRef" class makes clear that the code of a plant model must be prepared
before being able to carry out SA. The interface needs to be implemented by the
simulation-containing class in GroIMP. The three dummies must be overwritten accordingly.
Additionally, all model parameters that are meant to be examined must be replaced by a
"NumberRef" version. An SA function then can be called by passing the appropriate arguments
including an array of parameters and an instance of the main class itself (usually through the
keyword this when the function is called within the main class). All seven SA functions are
contained in the class "Sensitivity". They are marked as static, so the functions can be directly used
without the user needing to instantiate an object of the class. Summarizing it can be said that using
the plugin is very easy and only requires two steps: preparing the plant model as described and
then calling the desired SA function. When the SA is finished a plot window opens up and a
graphical representation of the results is displayed.

Local SA measures how much (in percent) the output changes when a single parameter is varied
around its initial reading. It delivers a rough impression of the model behavior, but does not
examine interaction effects. It can be considered as the most simple SA approach. Morris’s
elementary effects screening is a method that tries to rank the input parameters by their expected
effect strength. For that outcome for every parameter a fixed number of so-called elementary effects
is calculated. After that a statistical analysis of the effect readings delivers the desired parameter
sensitivity measures. The approach to calculate the main and interaction effects on extreme values
examines the height of the model output when the input parameters are set to their extreme
values. The main effects are obtained by setting a single parameter to its minimum or maximum.
This can reveal the overall direction of an effect and also the most influential parameters. In order
to see whether two parameters interact by the means of synergetically influencing the output, all
combinations of the parameter setting (extreme values) for the two parameters are tested. The
results are well interpretable in the corresponding interaction plot. The partial (rank) correlation
coefficient approach calculates the amount of influence between input and output using
correlation techniques. This results in sensitivity coefficients that determine the amount of
linearity between the input and output. The rank versions of these coefficients address the case
when a non-linear relationship is expected in order to obtain correct influence measures. The
standardized (rank) regression coefficients regresses the output on the input values. The
calculated regression coefficients hence are a direct importance measure of the input parameters.
The rank version again considers the possible non-linear parameter behavior. Sobol’s method,

CHAPTER 6. SUMMARY AND OUTLOOK 102

which belongs to the variance-decomposition methods, can be considered as the deepest SA
approach of all implemented ones. It calculates so-called effect indices of different order. A
first-order effect is a parameter’s main effect. Higher-order indices represent interaction effects.
Sobol requires a very high number of samples in order to achieve less-error-prone indices. The
extended Fourier amplitude sensitivity test (EFAST) internally calculates the same effect indices as
Sobol. However, the output variance decomposition is carried out using Fourier decomposition.
This leads to an increased convergence rate compared to Sobol. Thus, a lower number of samples
is required to achieve the same accuracy. Nevertheless, in the graphical representation of the
EFAST results the higher-order effect contributions are summed up; making - unlike Sobol - a
distinct effect contribution assignment difficult.

The plugin was tested with two plant models, a beech tree and an assimilate production model.
The beech is a plant model with a simulated light source, primary and secondary growth, leaves
and a photosynthesis implementation. For the SA different input parameters were examined
regarding the influence on the tree height and the total carbon production. Through its contained
random behavior, the outputs had to be averaged over 100 simulation runs. The outcomes of the
SA methods slightly differed. But in the end, for the tree height it was found out that the vitality,
the number of light days and the photosynthetic efficiency were most influential. A variation of
the branching angle or the vitality threshold had a negative effect on the tree height. These
findings were consistent along every SA method. The interaction plot furthermore revealed that
especially the parameters that are in association with photosynthesis (light days, PPFD_FACTOR,
efficiency) heavily interact by the means of boosting the slope of the output curve when two
parameters were maximal. It can be expected that the total carbon production is mainly affected
by the parameters that influence the photosynthesis. This is exactly what was found. The local SA
already showed that the deviation in output is very high when these parameters (leaf area, vitality,
light days, PPFD_FACTOR, efficiency) were slightly varied. High sensitivity on the five
parameters was also indicated by nearly all other methods. However, the results of Morris’s
screening were slightly different and could not completely reveal the model behavior that was
consistently found by all other methods. Concerning interactions, also the
photosynthesis-connected parameters greatly interacted. The setting of the maximum value
always led to a massive increase in output. This is the case for the total carbon production as well
as the tree height. For PCC/PRCC and SRC/SRRC it held true that for both outputs the
approaches possessed a relatively narrow uncertainty range. This indicates that the number of
samples was sufficiently high. However, this cannot be in total said for Sobol’s method. On the
one hand uncertainties had been expected when looking at the amount of interaction effects. But
the effect index instabilities mainly come from a too low number of simulation samples. This
reveals a major drawback of Sobol’s method. The examination of the assimilate production model
was very insightful, since this model possesses a vastly superior implementation of the
photosynthetic processes compared to the beech. Additionally, this model does not contain any

CHAPTER 6. SUMMARY AND OUTLOOK 103

randomness. Thus, the gathered output values are more stable leading to less uncertain sensitivity
measures. The SA of the model was carried out considering the influence of five input parameters
(CO2 concentration, temperature, age, photosynthetically active radiation, relative humidity) on
the net photosynthetic rate. All in all, the findings for the assimilate production model along the
SA methods were very consistent, which shows that the reliability of the sensitivity measures also
depends on the model behavior itself (determination, non-randomness). The relative humidity
parameter possesses a very low sensitivity and the influence is negligible compared to the other
parameters. The temperature and the age have a negative influence of the photosynthesis. The
most important parameter regarding the net photosynthetic rate is the CO2 concentration,
followed by the amount of photosynthetically active radiation (PAR). Interaction effects take place
with the exception for the relative humidity where the influence in connection with other
parameters was very low. For the CO2 concentration the biggest gap between the minimum and
maximum curves of the interactions can be recognized, underlining its sensitivity on the net
photosynthetic rate. For PCC/PRCC and SRC/SRRC the uncertainty is very low and the
calculated coefficients perfectly comply with the other results. However, the Sobol indices come
with high uncertainties, but the overall separation between important and non-important
parameters was confirmed.

The runtime and memory consumption among all SA methods is vastly different. It was tested for
a varying number of parameters. As expected the local SA had a linear and fast runtime (≈ 2s, 6
parameters). The memory consumption is the lowest of all methods. Morris’s elementary effects
screening and the main and interaction effects on extreme values were three times slower than the
local SA (≈ 6s, ≈ 5s, 6 parameters). Additionally, compared to all other approaches the memory
consumption was found out to be approximately 50% − 100% higher, yielding that these two
methods were the most memory-consuming ones. The runtime of the PCC/PRCC and the
SRC/SRRC was 6-10 times higher in comparison to Morris’s method (≈ 65s, ≈ 35s, 6 parameters).
The memory consumption here was in the mediocre range and resided approximately 2.5 times
greater than the one of the local SA. Non-linear runtime had been expected for most of the
methods. In particular the test data of Sobol and EFAST showed a non-linear increase in runtime
with rising number of parameters. Moreover, Sobol’s method was the slowest of all SA approaches
(≈ 700s, 6 parameters). This is exactly what had been expected, since Sobol processes the highest
amount of simulation data. EFAST was essentially faster than Sobol (≈ 190s, 6 parameters), but
compared to the other methods it was also greatly time consuming. The memory consumption of
Sobol’s method and EFAST resided in the mediocre range and was approximately comparable to
PCC/PRCC and SRC/SRRC. Regarding the quality of information, Sobol’s method delivers the
deepest insight in parameter sensitivity followed by PCC/PRCC, SRC/SRRC and EFAST. The
interaction plot of the method of main and interaction effects on extreme values is also very
insightful since the visual representation can yield a good impression on the overall parameter
behavior for interactions and additionally the corresponding absolute output height. The local SA

CHAPTER 6. SUMMARY AND OUTLOOK 104

and Morris’s screening must be considered as methods that help to get a first impression on
parameter sensitivity and also help carrying out a preselection of important parameters that
should be further examined, since the deeper methods are computationally expensive and the
effort is commonly in a non-linear functional dependence of the number of parameters. When the
runtime or the memory consumption of an SA method is related to its information quality one can
obtain a runtime or memory efficiency reading. The local SA, Morris’s screening and the main and
interaction effects on extreme values belong to the group of methods that are runtime efficient.
Induced by the high runtime Sobol’s method possesses a very low runtime efficiency reading.
Moreover, PCC/PRCC, SRC/SRRC and EFAST show low values. Regarding memory efficiency,
for the runtime-inefficient methods the opposite is the case. They posses a very high memory
efficiency. Due to their effort in displaying graphical results, Morris’s method and the main and
interaction effects on extreme values receive low memory efficiency values. The local SA approach
is the only method that is simultaneously runtime and memory efficient.

Considering the developed plugin one can say that the seven chosen and implemented SA
approaches are a good cross-selection of available SA methods, since the addressed objective and
revealed information are eclectic. However, the plugin could be supplemented by additional
functionality for example further SA approaches like the sequential bifurcation screening
method [35] or Csiszar F-divergence sensitivity indices [36]. In addition, a method that
automatically plots the functional dependence of the input and output could be helpful in order to
examine the model output evolution regarding extreme values or break-even points. Furthermore,
since R possesses sophisticated data analysis capability, methods that conduct statistical tests or
maintain value distribution charts could be extremely helpful in order to be able to deeply analyze
plant models within GroIMP.

The examination of the beech tree has revealed that for randomized plant models the output is
slightly deviating for one and the same parameter configuration. However, especially for methods
like local SA, Morris’s screening or main and interaction effects on extreme values the output
fluctuations result in unreliable and incomparable sensitivity measures. These readings make it
very difficult to attribute the sensitivity height to the parameter itself or to the model randomness,
leading to incorrect interpretations. Because of that, in the examination of the beech the output
had to be manually averaged over 100 simulation runs in order to decrease the variance and in this
way to stabilize the sensitivity values. Thus, it would be advantageous for the plugin if for the
different SA methods call parameters could be set in case of randomness-containing models, in
order to tell that the model contains randomness and on how many simulations the output shall
be processed. It is also imaginable that the output is not solely averaged by calculating the mean,
but also every mathematical procedure like the variance, median, minimum, maximum or the
application of any arbitrary function could be enabled.

The tests of Sobol’s method have shown in both examinations a specific and often high degree of

CHAPTER 6. SUMMARY AND OUTLOOK 105

uncertainty of the effect indices. This can be attributed to the number of samples that are used in
order to calculate the indices. In the current plugin implementation the number of samples is
chosen programmatically depending on the number of examined parameters. However, the plots
show that it would be beneficial to give the user more control on that particular quantity. Thus, the
uncertainty could be reduced depending on the requirements given by the concrete plant model.
Furthermore, the number of samples could be dynamically adapted by the index calculation itself.
Hence, when the error drops below an threshold - that is set by the user - the calculation can be
stopped. As a consequence, the runtime could also be improved when a lower number of samples
yields the same sensitivity accuracy.

In order to be able to carry out sensitivity analysis with the developed plugin, the user must
prepare the code by implementing the described interface and by replacing value-typed model
variables by reference-typed ones. This procedure is due to the structural architecture of Java/XL
and GroIMP. Nevertheless, since XL is a superset of Java, special compiler tokens could be
introduced for the purpose of marking variables and functions. By adding special prefixes or
suffixes to the identifiers of functions or variables, the model parameters that are meant to be
examined and the simulation function could be easily marked, diminishing the effort of the plugin
user to prepare a plant model down to the minimum.

In the plugin the output generating function that is needed for SA has to be defined by the user.
Structural plant information in GroIMP is commonly obtained by the use of XL graph queries,
since the plant and its parts are internally represented by a graph. This is how the tree height was
yielded in the examination of the beech model. However, since structural information of plants is
very often subject of SA, it would be favorable if regularly used graph queries, that obtain for
example the tree height, the extent in the xy-plane, the total volume or the surface area, would be
available as a convenience offer within the plugin.

The graphical representation of the outcome of the SA methods was done with R. Hence, the plot
window that opens up after a function terminates only exists in context of the R process.
Furthermore, the plots are created with the standard R packages for plots and charts. This
indicates that a further processing of the plots or the usage of packages with more sophisticated
plot options is not possible in the current plugin. The author of this thesis has developed - as part
of a research internship [37] - a charting plugin for GroIMP based on the R package "ggplot2". This
plugin is called "Rchart". It makes the far-reaching capabilities of the "ggplot2" package in GroIMP
available and allows the user to create advanced plots and to inspect or export the data. However,
since "Rchart" was still in a developing state and in order to ensure the complete executability, it
was chosen to develop the "Sensitivity" plugin independently without any mutual dependence.
Nevertheless, it is of advantage to combine both plugins in order to enhance the plot quality of the
SA plots, to make them more user-customizable and to ease the result extraction.

Bibliography

[1] B. Iooss and P. Lemaître, “A Review on Global Sensitivity Analysis Methods,” in Simulation-
Optimization of Complex Systems. Operations Research / Computer Science Interfaces Series,
G. Dellino and C. Meloni, Eds. Springer, Boston, MA, 2015, vol. 59, pp. 101–122.

[2] S. Jørgensen and B. Fath, “2 - Concepts of Modelling,” in Fundamentals of Ecological Modelling,
ser. Developments in Environmental Modelling, S. Jørgensen and B. Fath, Eds. Elsevier,
2011, vol. 23, pp. 19–93.

[3] J. Salciccioli, Y. Crutain, M. Komorowski, and D. Marshall, “Sensitivity Analysis and Model
Validation,” in Secondary Analysis of Electronic Health Records. Springer, Cham, 2016, pp.
263–271.

[4] A. Saltelli, Global Sensitivity Analysis: The Primer. John Wiley, 2008.

[5] J. Landsberg and P. Sands, “Chapter 8: Modelling Tree Growth: Concepts and Review,” in
Physiological Ecology of Forest Production: Principles, Processes and Models, J. Landsberg and
P. Sands, Eds. Academic Press, 2011, pp. 221–240.

[6] V. Bagad, Management Information Systems. Technical Publications, 2009.

[7] D. Pannell, “Sensitivity Analysis of Normative Economic Models: Theoretical Framework
and Practical Strategies,” Agricultural Economics, vol. 16, no. 2, pp. 139–152, 1997.

[8] Q. Wu and P.-H. Cournède, “A Comprehensive Methodology of Global Sensitivity Analysis
for Complex Mechanistic Models with an Application to Plant Growth,” Ecological Complexity,
vol. 20, pp. 219–232, 2014.

106

BIBLIOGRAPHY 107

[9] L. Thabane, L. Mbuagbaw, S. Zhang, Z. Samaan, M. Marcucci, C. Ye, M. Thabane,
L. Giangregorio, B. Dennis, D. Kosa, V. Debono, R. Dillenburg, V. Fruci, M. Bawor, S. Lee,
G. Wells, and C. Goldsmith, “A Tutorial on Sensitivity Analyses in Clinical Trials: The What,
Why, When and How,” BMC Medical Research Methodology, vol. 13, 2013.

[10] S. Balaman, “Chapter 5 - Uncertainty Issues in Biomass-Based Production Chains,” in Decision-
Making for Biomass-Based Production Chains, S. Balaman, Ed. Academic Press, 2019, pp.
113–142.

[11] F. Civan, “Model-Assisted Analysis and Interpretation of Laboratory and Field Tests,” in
Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation, F. Civan, Ed.
Gulf Publishing Company, 2000, p. 561.

[12] H. Gupta and S. Razavi, “Chapter 20 - Challenges and Future Outlook of Sensitivity Analysis,”
in Sensitivity Analysis in Earth Observation Modelling, G. Petropoulos and P. Srivastava, Eds.
Elsevier, 2017, pp. 397–415.

[13] A. Saltelli and P. Annoni, “How to Avoid a Perfunctory Sensitivity Analysis,” Environmental
Modelling & Software, vol. 25, no. 12, pp. 1508–1517, 2010.

[14] M. Henke, “GroIMP v1.4.2 Introduction and Overview,” 2013, [Online]. Available: http:
//www.uni-forst.gwdg.de/~wkurth/ssc13/GroIMPIntroduction.pdf. Accessed: 04|17|20.

[15] O. Kniemeyer, R. Hemmerling, and W. Kurth, “GroIMP,” [Online]. Available: http://www.
grogra.de/. Accessed: 04|17|20.

[16] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria, 2020, [Online]. Available: https://www.R-project.
org/. Accessed: 05|11|20.

[17] J. Thiele, W. Kurth, and V. Grimm, “Facilitating Parameter Estimation and Sensitivity Analysis
of Agent-Based Models: A Cookbook Using NetLogo and ’R’,” Journal of Artificial Societies and
Social Simulation, vol. 17, no. 3, 2014.

http://www.uni-forst.gwdg.de/~wkurth/ssc13/GroIMPIntroduction.pdf
http://www.uni-forst.gwdg.de/~wkurth/ssc13/GroIMPIntroduction.pdf
http://www.grogra.de/
http://www.grogra.de/
https://www.R-project.org/
https://www.R-project.org/

BIBLIOGRAPHY 108

[18] B. Iooss, A. Janon, G. Pujol, with contributions from Baptiste Broto, K. Boumhaout, S. D. Veiga,
T. Delage, R. E. Amri, J. Fruth, L. Gilquin, J. Guillaume, L. Le Gratiet, P. Lemaitre, A. Marrel,
A. Meynaoui, B. L. Nelson, F. Monari, R. Oomen, O. Rakovec, B. Ramos, O. Roustant, E. Song,
J. Staum, R. Sueur, T. Touati, and F. Weber, sensitivity: Global Sensitivity Analysis of Model
Outputs, 2020, R package version 1.18.0. [Online]. Available: https://CRAN.R-project.org/
package=sensitivity. Accessed: 06|24|20.

[19] U. Grömping, “R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level
Designs,” Journal of Statistical Software, vol. 56, no. 1, pp. 1–56, 2014, [Online]. Available:
http://www.jstatsoft.org/v56/i01/. Accessed: 06|24|20.

[20] R. B. Gramacy, “tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear
Regression and Design by Treed Gaussian Process Models,” Journal of Statistical Software,
vol. 19, no. 9, pp. 1–46, 2007, [Online]. Available: http://www.jstatsoft.org/v19/i09/.
Accessed: 06|24|20.

[21] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S, 4th ed. Springer, New York,
2002, [Online]. Available: http://www.stats.ox.ac.uk/pub/MASS4. Accessed: 06|24|20.

[22] B. Auguie, gridExtra: Miscellaneous Functions for "Grid" Graphics, 2017, R package version 2.3.
[Online]. Available: https://CRAN.R-project.org/package=gridExtra. Accessed: 06|24|20.

[23] S. Meschiari, latex2exp: Use LaTeX Expressions in Plots, 2015, R package version 0.4.0. [Online].
Available: https://CRAN.R-project.org/package=latex2exp. Accessed: 06|24|20.

[24] D. Sarkar, Lattice: Multivariate Data Visualization with R. Springer, New York, 2008, [Online].
Available: http://lmdvr.r-forge.r-project.org. Accessed: 06|24|20.

[25] T. D. Hocking, directlabels: Direct Labels for Multicolor Plots, 2020, R package version 2020.1.31.
[Online]. Available: https://CRAN.R-project.org/package=directlabels. Accessed: 06|24|20.

[26] T. Turányi, “Lecture 1-2 Local Sensitivity Analysis,” 2016, [Online]. Available:
http://garfield.chem.elte.hu/COST_Training_School_2016/overheads/Turanyi_1-2_
Local_Sensitivity_Analysis.pdf. Accessed: 05|07|20.

[27] M. Morris, “Factorial Sampling Plans for Preliminary Computational Experiments,”
Technometrics, vol. 33, no. 2, pp. 161–174, 1991.

https://CRAN.R-project.org/package=sensitivity
https://CRAN.R-project.org/package=sensitivity
http://www.jstatsoft.org/v56/i01/
http://www.jstatsoft.org/v19/i09/
http://www.stats.ox.ac.uk/pub/MASS4
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=latex2exp
http://lmdvr.r-forge.r-project.org
https://CRAN.R-project.org/package=directlabels
http://garfield.chem.elte.hu/COST_Training_School_2016/overheads/Turanyi_1-2_Local_Sensitivity_Analysis.pdf
http://garfield.chem.elte.hu/COST_Training_School_2016/overheads/Turanyi_1-2_Local_Sensitivity_Analysis.pdf

BIBLIOGRAPHY 109

[28] R. Iman, M. Shortencarier, and J. Johnson, “FORTRAN 77 Program and User’s Guide for the
Calculation of Partial Correlation and Standardized Regression Coefficients,” United States
Government Publications, 1985.

[29] I. Sobol, “Sensitivity Estimates for Nonlinear Mathematical Models,” Mathematical Modelling
and Computational Experiments, vol. 1, no. 4, pp. 407–414, 1993.

[30] T. Homma and A. Saltelli, “Importance Measures in Global Sensitivity Analysis of Nonlinear
Models,” Reliability Engineering & System Safety, vol. 52, no. 1, pp. 1–17, 1996.

[31] P.-H. Cournède, Y. Chen, Q. Wu, C. Baey, and B. Bayol, “Development and Evaluation of
Plant Growth Models: Methodology and Implementation in the PYGMALION Platform,”
Mathematical Modelling of Natural Phenomena, vol. 8, 2013.

[32] A. Saltelli, S. Tarantola, and K. Chan, “A Quantitative Model-Independent Method for Global
Sensitivity Analysis of Model Output,” Technometrics, vol. 41, no. 1, pp. 39–56, 1999.

[33] O. Kniemeyer, “Design and Implementation of a Graph Grammar Based Language
for Functional-Structural Plant Modelling,” dissertation, Brandenburgische Technische
Universität Cottbus, 2008.

[34] H. Wickham, pryr: Tools for Computing on the Language, 2018, R package version 0.1.4. [Online].
Available: https://CRAN.R-project.org/package=pryr, Accessed: 07|12|20.

[35] B. Bettonvil and J. Kleijnen, “Searching for Important Factors in Simulation Models with
Many Factors: Sequential Bifurcation,” European Journal of Operational Research, vol. 96, no. 1,
pp. 180–194, 1997.

[36] E. Borgonovo, “A new Uncertainty Importance Measure,” Reliability Engineering & System
Safety, vol. 92, no. 6, pp. 771–784, 2007.

[37] L. Gürtler, “Internship Report: Connecting R to GroIMP - Rchart — A Chart Plugin for
GroIMP based on R/ggplot2,” not published, 2020.

https://CRAN.R-project.org/package=pryr

Appendix A

Source Code

A.1 RConnection.java

1 /*
2 * Copyright (C) 2020 GroIMP Developer Team

3 *
4 * This program is free software; you can redistribute it and/or

5 * modify it under the terms of the GNU General Public License

6 * as published by the Free Software Foundation; either version 3

7 * of the License, or any later version.

8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *
14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not, write to the Free Software

16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

17 02111-1307, USA.

18 */

19
20 package de.grogra.sensitivity;

21
22 import java.awt.BorderLayout;

23 import java.awt.Component;

24 import java.awt.Dialog;

25 import java.awt.GridLayout;

26 import java.awt.Toolkit;

27 import java.awt.datatransfer.StringSelection;

28 import java.awt.event.ActionEvent;

29 import java.awt.event.ActionListener;

30 import java.io.BufferedReader;

110

APPENDIX A. SOURCE CODE 111

31 import java.io.BufferedWriter;

32 import java.io.File;

33 import java.io.FileWriter;

34 import java.io.IOException;

35 import java.io.InputStreamReader;

36 import java.io.OutputStreamWriter;

37 import java.nio.file.Files;

38 import java.util.ArrayList;

39 import javax.swing.JButton;

40 import javax.swing.JDialog;

41 import javax.swing.JFileChooser;

42 import javax.swing.JLabel;

43 import javax.swing.JOptionPane;

44 import javax.swing.JPanel;

45 import javax.swing.border.EmptyBorder;

46 import de.grogra.rgg.Library;

47
48 /**
49 * Class for process communication with R

50 *
51 * @author Lukas Guertler

52 * @version 1.0

53 */

54 public class RConnection {

55
56 // stream writer and reader

57 private BufferedWriter w; ////

58 private BufferedReader r; ////

59
60 // connection successfully established?

61 private boolean _success = false; ////

62
63 public boolean success() { ////

64 return _success;

65 } ////

66
67 /**
68 * constructor, init a new connection

69 */

70 public RConnection() { ////

71
72 String rpath = get_R_executable();

73 _success = (rpath != null && init_R_connection(rpath) && check_R_packages());

74 } ////

75
76 /**
77 * start a connection to R for given executable

78 *
79 * @param rpath path to R executable file

APPENDIX A. SOURCE CODE 112

80 */

81 private boolean init_R_connection(String rpath) { ////

82 try {

83
84 // open R process

85 ProcessBuilder RPB = new ProcessBuilder();

86 RPB.command(rpath, "--no-save");

87 RPB.redirectErrorStream(true);

88 Process R = RPB.start();

89
90 // get reader and writer for stdin and stdout

91 BufferedWriter w = new BufferedWriter(new OutputStreamWriter(R.getOutputStream

()));

92 BufferedReader r = new BufferedReader(new InputStreamReader(R.getInputStream())

);

93
94 // set writer and reader

95 this.w = w;

96 this.r = r;

97
98 // success

99 return true;

100
101 } catch (Exception e) {

102
103 // print error message

104 String errorMsg = "init_R_connection: " + e;

105 System.out.println(errorMsg);

106 Library.println(errorMsg);

107 return false;

108 }

109 } ////

110
111 /**
112 * evaluate an expression

113 *
114 * @param expression expression

115 * @return String[] response

116 */

117 public String[] eval(String expression) { ////

118 try {

119 System.out.println(expression);

120
121 // special token to detect end of output

122 String token = "AAAA";

123
124 // send expression

125 w.write(String.format("%s\n", expression));

126 w.write(String.format("’%s’\n", token));

APPENDIX A. SOURCE CODE 113

127 w.flush();

128
129 // skip own expression, recall: write to out-->in

130 long lines = 1 + expression.chars().filter(ch -> ch == ’\n’).count();

131 for (int i = 0; i < lines; i++)

132 r.readLine();

133
134 // read output until end token is reached

135 String tmp;

136 String res = "";

137 while (!(tmp = r.readLine()).endsWith(String.format("’%s’", token))) {

138 res += "\n" + tmp;

139 }

140 r.readLine();

141
142 // return response

143 return res.substring(res.length() > 0 ? 1 : 0).split("\n");

144
145 } catch (Exception e) {

146
147 // print error message

148 String errorMsg = "eval: " + e;

149 System.out.println(errorMsg);

150 Library.println(errorMsg);

151 return null;

152 }

153 } ////

154
155 /**
156 * open plot window

157 */

158 public void X11() { ////

159 try {

160 if (isOSWindows()) {

161 w.write("windows()\n");

162 w.flush();

163 } else if (isOSLinux()) {

164 w.write("x11()\n");

165 w.flush();

166 } else if (isOSMac()) {

167 w.write("quartz()\n");

168 w.flush();

169 }

170 } catch (Exception e) {

171 }

172 } ////

173
174 /**
175 * wrapper for function that waits for closing of plot window

APPENDIX A. SOURCE CODE 114

176 */

177 public void waitForClose() { ////

178 try {

179 w.write("waitForClose()\n");

180 w.flush();

181 } catch (Exception e) {

182 }

183 } ////

184
185 /**
186 * check if OS is Windows

187 */

188 private boolean isOSWindows() { ////

189 return System.getProperty("os.name").toLowerCase().contains("windows");

190 } ////

191
192 /**
193 * check if OS is Linux

194 */

195 private boolean isOSLinux() { ////

196 return System.getProperty("os.name").toLowerCase().contains("nux");

197 } ////

198
199 /**
200 * check if OS is Mac

201 */

202 private boolean isOSMac() { ////

203 return System.getProperty("os.name").toLowerCase().contains("mac");

204 } ////

205
206 /**
207 * list all files (including subdirectories)

208 *
209 * @param directoryName directory

210 * @param files ArrayList of files

211 */

212 private void listf(String directoryName, ArrayList<String> files) {

213 File directory = new File(directoryName);

214
215 // Get all files from a directory.

216 File[] fList = directory.listFiles();

217 if (fList != null) {

218 for (File file : fList) {

219 if (file.isFile()) {

220 files.add(file.toString());

221 } else if (file.isDirectory()) {

222 listf(file.getAbsolutePath(), files);

223 }

224 }

APPENDIX A. SOURCE CODE 115

225 }

226 }

227
228 /**
229 * get the R executable path

230 *
231 * @return path, returns null in case of missing R installation

232 */

233 private String get_R_executable() { ////

234
235 if (isOSWindows()) {

236 try {

237 File settingsDir = new File("plugins\\Sensitivity\\settings");

238
239 if (!settingsDir.exists())

240 settingsDir.mkdirs();

241
242 File settingsFile = new File("plugins\\Sensitivity\\settings\\RPATH");

243
244 if (settingsFile.exists()) {

245 String rpath = new String(Files.readAllBytes(settingsFile.toPath()));

246
247 if (new File(rpath).getAbsoluteFile().exists()) {

248 return rpath;

249 }

250 }

251
252 JFileChooser folderPicker = new JFileChooser();

253 folderPicker.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

254 folderPicker.setDialogTitle("Please select the R installation folder!");

255
256 if (folderPicker.showOpenDialog(null) == JFileChooser.APPROVE_OPTION) {

257
258 String dir = folderPicker.getSelectedFile().toString();

259 ArrayList<String> files = new ArrayList<String>();

260 listf(dir, files);

261 String toSearch = "r.exe";

262 boolean found = false;

263 String ScriptEngine = null;

264
265 for (String file : files) {

266 if (file.toLowerCase().endsWith(toSearch)) {

267 ScriptEngine = file;

268 BufferedWriter writer = new BufferedWriter(new FileWriter(

settingsFile));

269 writer.write(file);

270 writer.close();

271 found = true;

272 break;

APPENDIX A. SOURCE CODE 116

273 }

274 }

275
276 if (!found) {

277 JOptionPane.showMessageDialog(null, "R installation corrupted!", "

Error",

278 JOptionPane.INFORMATION_MESSAGE);

279 } else {

280 return ScriptEngine;

281 }

282 }

283
284 } catch (Exception e) {

285 System.out.println(e);

286 }

287
288 } else if (isOSLinux()) {

289 try {

290 new ProcessBuilder("R").start();

291 return "R";

292 } catch (IOException e) {

293
294 JDialog diag = new JDialog();

295 diag.setTitle("R installation required");

296 diag.setLayout(new BorderLayout());

297 EmptyBorder eb = new EmptyBorder(5, 10, 5, 10);

298
299 JLabel l1 = new JLabel("R could not be found! Please perform the following

steps:");

300 JLabel l2 = new JLabel(" 1. Open terminal");

301 JLabel l3 = new JLabel(" 2. Type in ’sudo apt-get install r-base’ and

press Enter");

302 JLabel l4 = new JLabel(" 3. Type in ’sudo apt-get install r-recommended’

and press Enter");

303 JLabel l5 = new JLabel(" 4. Type in: ’sudo R’ and press Enter");

304 JLabel l6 = new JLabel(" 5. Type in: ’install.packages(c(’sensitivity’,’

FrF2’,’tgp’,’MASS’,");

305 JLabel l7 = new JLabel(" ’gridExtra’,’latex2exp’,’lattice’,’

directlabels’))’ and press Enter");

306 JLabel l8 = new JLabel(" 6. Close terminal");

307
308 l1.setBorder(eb);

309 l2.setBorder(eb);

310 l3.setBorder(eb);

311 l4.setBorder(eb);

312 l5.setBorder(eb);

313 l6.setBorder(eb);

314 l7.setBorder(eb);

315 l8.setBorder(eb);

APPENDIX A. SOURCE CODE 117

316
317 JButton b1 = new JButton("copy to clipboard");

318 b1.setName("sudo apt-get install r-base");

319 JButton b2 = new JButton("copy to clipboard");

320 b2.setName("sudo apt-get install r-recommended");

321 JButton b3 = new JButton("copy to clipboard");

322 b3.setName("sudo R");

323 JButton b4 = new JButton("copy to clipboard");

324 b4.setName(

325 "install.packages(c(’sensitivity’,’FrF2’,’tgp’,’MASS’,’gridExtra’,’

latex2exp’,’lattice’,’directlabels’))");

326
327 ActionListener al = new ActionListener() {

328 public void actionPerformed(ActionEvent e) {

329 Component component = (Component) e.getSource();

330 StringSelection stringSelection = new StringSelection(component.

getName());

331 Toolkit.getDefaultToolkit().getSystemClipboard().setContents(

stringSelection, null);

332 }

333 };

334
335 b1.addActionListener(al);

336 b2.addActionListener(al);

337 b3.addActionListener(al);

338 b4.addActionListener(al);

339
340 JPanel jp1 = new JPanel(new GridLayout(8, 1));

341 JPanel jp2 = new JPanel(new GridLayout(8, 1));

342
343 jp1.add(l1);

344 jp1.add(l2);

345 jp1.add(l3);

346 jp1.add(l4);

347 jp1.add(l5);

348 jp1.add(l6);

349 jp1.add(l7);

350 jp1.add(l8);

351 jp2.add(new JLabel(""));

352 jp2.add(new JLabel(""));

353 jp2.add(b1);

354 jp2.add(b2);

355 jp2.add(b3);

356 jp2.add(b4);

357 diag.add(jp1, BorderLayout.WEST);

358 diag.add(jp2, BorderLayout.EAST);

359 diag.pack();

360 diag.setModalityType(Dialog.ModalityType.APPLICATION_MODAL);

361 diag.setLocationRelativeTo(null);

APPENDIX A. SOURCE CODE 118

362 diag.setVisible(true);

363 }

364
365 } else if (isOSMac()) {

366 String rpath = "/usr/bin/R";

367 try {

368 new ProcessBuilder(rpath).start();

369 return rpath;

370 } catch (IOException e) {

371 JOptionPane.showMessageDialog(null, "R installation required!", "Error",

372 JOptionPane.INFORMATION_MESSAGE);

373 }

374 } else {

375 JOptionPane.showMessageDialog(null, "OS not supported!", "", JOptionPane.

INFORMATION_MESSAGE);

376 }

377 return null;

378 } ////

379
380 /**
381 * check R installation for necessary packages

382 *
383 * @return true if all packages are installed

384 */

385 private boolean check_R_packages() { ////

386 try {

387
388 // load necessary R packages

389 eval("Sys.setenv(LANGUAGE = ’en’)");

390 eval("packages <- c(’sensitivity’,’FrF2’,’tgp’,’MASS’,’gridExtra’,’latex2exp’,’

lattice’,’directlabels’)");

391 String res = eval("print(setdiff(packages, rownames(installed.packages())))")

[0];

392
393 if (res.contains("character(0)")) {

394
395 // load necessary R packages

396 eval("library(sensitivity)");

397 eval("library(FrF2)");

398 eval("library(tgp)");

399 eval("library(MASS)");

400 eval("library(gridExtra)");

401 eval("library(latex2exp)");

402 eval("library(lattice)");

403 eval("library(directlabels)");

404
405 // definition of function needed for later matrix parsing

406 eval("flat <- function(var) {\n" + "tmp = unname(var)\n" + "for (i in 1:dim(

tmp)[1]) {\n"

APPENDIX A. SOURCE CODE 119

407 + "for (j in 1:dim(tmp)[2]) {\n" + "print(tmp[i,j])\n" + "}\n" + "}\n"

+ "}");

408
409 // definition of function that waits for closing of plot window

410 eval("waitForClose <- function() {\n" + "while (length(dev.list())!=0) {\n"

+ "Sys.sleep(1)\n" + "}\n"

411 + "q()\n" + "}");

412
413 return true;

414
415 } else {

416 String[] missingPackages = res.split(" ");

417
418 String outMsg = "";

419
420 for (String p : missingPackages) {

421
422 if (p.startsWith("\""))

423 outMsg += String.format("\n > %s", p);

424 }

425
426 JOptionPane.showMessageDialog(null, "Please install the following R packages

:" + outMsg, "",

427 JOptionPane.INFORMATION_MESSAGE);

428 return false;

429 }

430
431 } catch (Exception e) {

432 System.out.println(e);

433 return false;

434 }

435 } ////

436 }

APPENDIX A. SOURCE CODE 120

A.2 Simulation.java

1 /*
2 * Copyright (C) 2020 GroIMP Developer Team

3 *
4 * This program is free software; you can redistribute it and/or

5 * modify it under the terms of the GNU General Public License

6 * as published by the Free Software Foundation; either version 3

7 * of the License, or any later version.

8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *
14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not, write to the Free Software

16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

17 02111-1307, USA.

18 */

19
20 package de.grogra.sensitivity;

21
22 /**
23 * Interface to implement a simulation

24 *
25 * @author Lukas Guertler

26 * @version 1.0

27 */

28 public interface Simulation {

29 public void run(); ////

30
31 public double getOutput(); ////

32
33 public String outputName(); ////

34 }

APPENDIX A. SOURCE CODE 121

A.3 NumberRef.java

1 /*
2 * Copyright (C) 2020 GroIMP Developer Team

3 *
4 * This program is free software; you can redistribute it and/or

5 * modify it under the terms of the GNU General Public License

6 * as published by the Free Software Foundation; either version 3

7 * of the License, or any later version.

8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *
14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not, write to the Free Software

16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

17 02111-1307, USA.

18 */

19
20 package de.grogra.sensitivity;

21
22 import java.io.Serializable;

23
24 /**
25 * Class for boxing and unboxing of number types

26 *
27 * @author Lukas Guertler

28 * @version 1.0

29 */

30 public class NumberRef implements Serializable {

31 private double value; ////

32 private String name; ////

33
34 public NumberRef(int value, String name) { ////

35 this((double) value, name);

36 } ////

37
38 public NumberRef(long value, String name) { ////

39 this((double) value, name);

40 } ////

41
42 public NumberRef(float value, String name) { ////

43 this((double) value, name);

44 } ////

45
46 public NumberRef(double value, String name) { ////

APPENDIX A. SOURCE CODE 122

47 this.value = value;

48 this.name = name;

49 } ////

50
51 public int getInt() { ////

52 return (int) value;

53 } ////

54
55 public long getLong() { ////

56 return (long) value;

57 } ////

58
59 public float getFlt() { ////

60 return (float) value;

61 } ////

62
63 public double getDbl() { ////

64 return (double) value;

65 } ////

66
67 public void set(int value) { ////

68 this.value = (double) value;

69 } ////

70
71 public void set(long value) { ////

72 this.value = (double) value;

73 } ////

74
75 public void set(float value) { ////

76 this.value = (double) value;

77 } ////

78
79 public void set(double value) { ////

80 this.value = value;

81 } ////

82
83 public String name() { ////

84 return name;

85 } ////

86
87 public void setName(String name) { ////

88 this.name = name;

89 } ////

90 }

APPENDIX A. SOURCE CODE 123

A.4 Sensitivity.java

1 /*
2 * Copyright (C) 2020 GroIMP Developer Team

3 *
4 * This program is free software; you can redistribute it and/or

5 * modify it under the terms of the GNU General Public License

6 * as published by the Free Software Foundation; either version 3

7 * of the License, or any later version.

8 *
9 * This program is distributed in the hope that it will be useful,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *
14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not, write to the Free Software

16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

17 02111-1307, USA.

18 */

19
20 package de.grogra.sensitivity;

21
22 import de.grogra.rgg.Library;

23
24 /**
25 * Sensitivity analysis plugin for GroIMP using R

26 *
27 * @author Lukas Guertler

28 * @version 1.0

29 */

30 public abstract class Sensitivity {

31
32 /**
33 * perform local sensitivity analysis

34 *
35 * @param parameters array of model parameters

36 * @param min relative minimum test value for examination range, e.g. 0.9

37 * @param max relative maximum test value for examination range, e.g. 1.1

38 * @param simulation simulation to run

39 */

40 public static void local_sensitivity_analysis(NumberRef[] parameters, double min,

double max,

41 Simulation simulation) { ////

42
43 // open new R connection

44 RConnection rc = new RConnection();

45 if (!rc.success())

APPENDIX A. SOURCE CODE 124

46 return;

47
48 // create and fill array for output measurements for tested parameter

49 // combinations

50 simulation.run();

51 double baseValue = simulation.getOutput();

52 double[] levels = new double[] { min, max };

53 double measurements[][] = new double[parameters.length][levels.length];

54
55 for (int i = 0; i < parameters.length; i++) {

56
57 double orgVal = parameters[i].getDbl();

58
59 // run simulation with OAT approach

60 for (int j = 0; j < levels.length; j++) {

61 parameters[i].set(levels[j] * orgVal);

62 simulation.run();

63 measurements[i][j] = simulation.getOutput();

64 parameters[i].set(orgVal);

65 }

66 }

67
68 // calculate individual output deviation

69 int z = 1;

70 rc.eval("df <- data.frame(c(0))");

71 for (int i = 0; i < parameters.length; i++) {

72 double minOutput = measurements[i][0];

73 double maxOutput = measurements[i][1];

74
75 double sens_min = (minOutput - baseValue) / baseValue * 100.0;

76 double sens_max = (maxOutput - baseValue) / baseValue * 100.0;

77
78 rc.eval(String.format("df[%s,1] <- %s", z, sens_min));

79 rc.eval(String.format("rownames(df)[%s] <- ’%s_min’", z, parameters[i].name()))

;

80 z++;

81 rc.eval(String.format("df[%s,1] <- %s", z, sens_max));

82 rc.eval(String.format("rownames(df)[%s] <- ’%s_max’", z, parameters[i].name()))

;

83 z++;

84 }

85
86 // plot result

87 rc.eval(String.format("colnames(df)[1] <- ’%s’", validVarName(simulation.

outputName())));

88 rc.X11();

89 rc.eval("grid.table(df)");

90 rc.waitForClose();

91

APPENDIX A. SOURCE CODE 125

92 } ////

93
94 /**
95 * perform Morris’s elementary effects screening

96 *
97 * @param parameters array of model parameters

98 * @param min_var minimum test value for each parameter

99 * @param max_var maximum test value for each parameter

100 * @param simulation simulation to run

101 */

102 public static void morris_elementary_effects_screening(NumberRef[] parameters, double

[] min_var, double[] max_var,

103 Simulation simulation) { ////

104 try {

105
106 // open new R connection

107 RConnection rc = new RConnection();

108 if (!rc.success())

109 return;

110
111 // create morris object

112 rc.eval(String.format(

113 "mo <- morris(model = NULL, factors = %s, r = 10," + "design = list(type

= ’oat’, levels = 10),"

114 + "binf = c(%s)," + "bsup = c(%s), scale=TRUE)",

115 parameters.length, joinStr(min_var, ","), joinStr(max_var, ",")));

116
117 // read the parameter combinations from the morris object

118 double[][] param_combs = parseMatrix(rc.eval("flat(mo$X)"), parameters.length);

119
120 // run simulations for parameter combinations and store output

121 rc.eval("res = 0");

122 for (int i = 0; i < param_combs.length; i++) {

123 for (int j = 0; j < parameters.length; j++)

124 parameters[j].set(param_combs[i][j]);

125
126 simulation.run();

127 rc.eval(String.format("res[%s] <- %s", i + 1, simulation.getOutput()));

128 }

129
130 // hand over the simulation results to the morris object

131 rc.eval("tell(mo, res)");

132
133 // calculate desired sensitivity measures

134 rc.eval("mu <- as.matrix(apply(mo$ee, 2, mean))");

135 rc.eval("mu.star <- as.matrix(apply(mo$ee, 2, function(x) mean(abs(x))))");

136 rc.eval("sigma <- as.matrix(apply(mo$ee, 2, function(x) sd(x, na.rm=T)))");

137
138 // plot results

APPENDIX A. SOURCE CODE 126

139 rc.eval("labels <- ’0’");

140 for (int i = 0; i < parameters.length; i++)

141 rc.eval(String.format("labels[%s] <- ’%s’", i + 1, validVarName(parameters[i

].name())));

142 rc.X11();

143 rc.eval(String.format(

144 "direct.label(xyplot(sigma~mu.star,data=data.frame(mu.star,sigma),group=

labels,col=’black’,xlab = TeX(’$\\\\mu^{*}$’),ylab = TeX(’$\\\\sigma$

’),main=’Morris\\’s elementary effects screening for %s’))",

145 validVarName(simulation.outputName())));

146 rc.waitForClose();

147
148 } catch (Exception e) {

149
150 // print error message

151 String errorMsg = "morris_elementary_effects_screening: " + e;

152 System.out.println(errorMsg);

153 Library.println(errorMsg);

154 }

155 } ////

156
157 /**
158 * calculate main and interaction effects on extreme values

159 *
160 * @param parameters array of model parameters

161 * @param min_var minimum test value for each parameter

162 * @param max_var maximum test value for each parameter

163 * @param simulation simulation to run

164 */

165 public static void main_and_interaction_effects_on_extreme_values(NumberRef[]

parameters, double[] min_var,

166 double[] max_var, Simulation simulation) { ////

167 try {

168
169 // open new R connection

170 RConnection rc = new RConnection();

171 if (!rc.success())

172 return;

173
174 // make label with parameter names

175 String labels = "";

176 for (int i = 0; i < parameters.length; i++)

177 labels += String.format(",’%s’", parameters[i].name());

178
179 // create full factorial design

180 rc.eval(String.format("tmp <- FrF2(nruns=2^%s, nfactors=%s, randomize=FALSE," +

"default.levels = c(0,1))",

181 parameters.length, parameters.length));

182

APPENDIX A. SOURCE CODE 127

183 rc.eval(String.format(

184 "ff <- FrF2(nruns=2^%s, nfactors=%s, randomize=FALSE,"

185 + "factor.names=c(%s),default.levels = c(’min’,’max’))",

186 parameters.length, parameters.length, labels.substring(1)));

187
188 String[] vars_str = rc.eval("flat(as.matrix(tmp))");

189
190 // number of samples

191 int samples = vars_str.length / parameters.length;

192
193 // parse parameter combinations

194 double[][] param_combs = new double[samples][parameters.length];

195 int k = 0;

196 for (int i = 0; i < samples; i++) {

197 for (int j = 0; j < parameters.length; j++) {

198 double val = Double.parseDouble(vars_str[k++].substring(4).replace("\"",

""));

199 param_combs[i][j] = val == 0.0 ? min_var[j] : max_var[j];

200 }

201 }

202
203 // run simulations for parameter combinations and store output

204 rc.eval("res = 0");

205 for (int i = 0; i < samples; i++) {

206 for (int j = 0; j < parameters.length; j++)

207 parameters[j].set(param_combs[i][j]);

208
209 simulation.run();

210 rc.eval(String.format("res[%s] <- %s", i + 1, simulation.getOutput()));

211 }

212
213 // plot results

214 String outName = validVarName(simulation.outputName());

215 rc.eval(String.format("%s <- res", outName));

216 rc.eval(String.format("ffr <- add.response(ff, response=%s)", outName));

217 rc.X11();

218 rc.eval("MEPlot(ffr)");

219 rc.X11();

220 rc.eval("IAPlot(ffr)");

221 rc.waitForClose();

222
223 } catch (Exception e) {

224
225 // print error message

226 String errorMsg = "main_and_interaction_effects_on_extreme_values: " + e;

227 System.out.println(errorMsg);

228 Library.println(errorMsg);

229 }

230 } ////

APPENDIX A. SOURCE CODE 128

231
232 /**
233 * calculate partial (including rank) correlation coefficients

234 *
235 * @param parameters array of model parameters

236 * @param min_var minimum test value for each parameter

237 * @param max_var maximum test value for each parameter

238 * @param simulation simulation to run

239 */

240 public static void partial_correlation_coefficients(NumberRef[] parameters, double[]

min_var, double[] max_var,

241 Simulation simulation) { ////

242 try {

243
244 // open new R connection

245 RConnection rc = new RConnection();

246 if (!rc.success())

247 return;

248
249 // create latin hypercube sample

250 rc.eval(String.format("param.sets <- lhs(n=%s00, rect=matrix(c(%s,%s), %s))",

parameters.length,

251 joinStr(min_var, ","), joinStr(max_var, ","), parameters.length));

252
253 // parse parameter combinations

254 double[][] param_combs = parseMatrix(rc.eval("flat(param.sets)"), parameters.

length);

255
256 // run simulations for parameter combinations and store output

257 rc.eval("res = 0");

258 for (int i = 0; i < param_combs.length; i++) {

259 for (int j = 0; j < parameters.length; j++)

260 parameters[j].set(param_combs[i][j]);

261
262 simulation.run();

263 rc.eval(String.format("res[%s] <- %s", i + 1, simulation.getOutput()));

264 }

265
266 // label columns

267 rc.eval("param.sets <- as.data.frame(param.sets)");

268 for (int i = 0; i < parameters.length; i++)

269 rc.eval(String.format("colnames(param.sets)[%s] <- ’%s’", i + 1, parameters[

i].name()));

270
271 // calculate pcc and prcc

272 rc.eval(String.format("pcc.result <- pcc(X=param.sets, y=res, nboot = %s00,

rank = FALSE)",

273 parameters.length));

274 rc.eval(String.format("prcc.result <- pcc(X=param.sets, y=res, nboot = %s00,

APPENDIX A. SOURCE CODE 129

rank = TRUE)",

275 parameters.length));

276
277 // plot results

278 rc.X11();

279 rc.eval("plot(pcc.result)");

280 rc.X11();

281 rc.eval("plot(prcc.result)");

282 rc.eval("par(col.main=’white’)");

283 for (int i = 0; i < 10; i++)

284 rc.eval("title(’PRRC’)");

285 rc.eval("par(col.main=’black’)");

286 rc.eval("title(’PRCC’)");

287 rc.waitForClose();

288
289 } catch (Exception e) {

290
291 // print error message

292 String errorMsg = "partial_correlation_coefficients: " + e;

293 System.out.println(errorMsg);

294 Library.println(errorMsg);

295 }

296 } ////

297
298 /**
299 * calculate standardized (including rank) regression coefficients

300 *
301 * @param parameters array of model parameters

302 * @param min_var minimum test value for each parameter

303 * @param max_var maximum test value for each parameter

304 * @param simulation simulation to run

305 */

306 public static void standardized_regression_coefficients(NumberRef[] parameters,

double[] min_var, double[] max_var,

307 Simulation simulation) { ////

308 try {

309
310 // open new R connection

311 RConnection rc = new RConnection();

312 if (!rc.success())

313 return;

314
315 // create latin hypercube sample

316 rc.eval(String.format("param.sets <- lhs(n=%s00, rect=matrix(c(%s,%s), %s))",

parameters.length,

317 joinStr(min_var, ","), joinStr(max_var, ","), parameters.length));

318
319 // parse parameter combinations

320 double[][] param_combs = parseMatrix(rc.eval("flat(param.sets)"), parameters.

APPENDIX A. SOURCE CODE 130

length);

321
322 // run simulations for parameter combinations and store output

323 rc.eval("res = 0");

324 for (int i = 0; i < param_combs.length; i++) {

325 for (int j = 0; j < parameters.length; j++)

326 parameters[j].set(param_combs[i][j]);

327
328 simulation.run();

329 rc.eval(String.format("res[%s] <- %s", i + 1, simulation.getOutput()));

330 }

331
332 // label columns

333 rc.eval("param.sets <- as.data.frame(param.sets)");

334 for (int i = 0; i < parameters.length; i++)

335 rc.eval(String.format("colnames(param.sets)[%s] <- ’%s’", i + 1, parameters[

i].name()));

336
337 // calculate src and arrc

338 rc.eval(String.format("src.result <- src(X=param.sets, y=res, nboot = %s00,

rank = FALSE)",

339 parameters.length));

340 rc.eval(String.format("srrc.result <- src(X=param.sets, y=res, nboot = %s00,

rank = TRUE)",

341 parameters.length));

342
343 // plot results

344 rc.X11();

345 rc.eval("plot(src.result)");

346 rc.X11();

347 rc.eval("plot(srrc.result)");

348 rc.waitForClose();

349
350 } catch (Exception e) {

351
352 // print error message

353 String errorMsg = "standardized_regression_coefficients: " + e;

354 System.out.println(errorMsg);

355 Library.println(errorMsg);

356 }

357 } ////

358
359 /**
360 * perform Sobol’s method

361 *
362 * @param parameters array of model parameters

363 * @param min_var minimum test value for each parameter

364 * @param max_var maximum test value for each parameter

365 * @param simulation simulation to run

APPENDIX A. SOURCE CODE 131

366 */

367 public static void sobol(NumberRef[] parameters, double[] min_var, double[] max_var,

Simulation simulation) { //

//

368 try {

369
370 // open new R connection

371 RConnection rc = new RConnection(); ////

372 if (!rc.success()) ////

373 return; ////

374
375 // create two latin hypercube sample

376 rc.eval(String.format("input.set.1 <- as.data.frame(lhs(n=%s00, rect=matrix(c(%

s,%s), %s)))",

377 parameters.length, joinStr(min_var, ","), joinStr(max_var, ","),

parameters.length)); //

//

378 rc.eval(String.format("input.set.2 <- as.data.frame(lhs(n=%s00, rect=matrix(c(%

s,%s), %s)))",

379 parameters.length, joinStr(min_var, ","), joinStr(max_var, ","),

parameters.length)); //

//

380
381 // label columns

382 for (int i = 0; i < parameters.length; i++) { ////

383 rc.eval(String.format("colnames(input.set.1)[%s] <- ’%s’", i + 1, parameters

[i].name()));

384 rc.eval(String.format("colnames(input.set.2)[%s] <- ’%s’", i + 1, parameters

[i].name()));

385 } ////

386
387 // create sobol object

388 rc.eval(String.format(

389 "so <- sobol(model = NULL, X1 = input.set.1, X2 = input.set.2, order = 2,

nboot = %s00)",

390 parameters.length)); ////

391
392 // parse parameter combinations

393 double[][] param_combs = parseMatrix(rc.eval("flat(as.matrix(so$X))"),

parameters.length); //

//

394
395 // run simulations for parameter combinations and store output

396 rc.eval("res = 0"); ////

397 for (int i = 0; i < param_combs.length; i++) { ////

398 for (int j = 0; j < parameters.length; j++)

399 parameters[j].set(param_combs[i][j]); ////

400
401 simulation.run();////

APPENDIX A. SOURCE CODE 132

402 rc.eval(String.format("res[%s] <- %s", i + 1, simulation.getOutput())); ////

403 } ////

404
405 // hand over the simulation results to the sobol object

406 rc.eval("tell(so, res)"); ////

407
408 // plot results

409 rc.X11(); ////

410 rc.eval("plot(so)"); ////

411 rc.waitForClose(); ////

412
413 } catch (Exception e) {

414
415 // print error message

416 String errorMsg = "sobol: " + e; ////

417 System.out.println(errorMsg);

418 Library.println(errorMsg); ////

419 }

420 } ////

421
422 /**
423 * perform extended fourier amplitude sensitivity test

424 *
425 * @param parameters array of model parameters

426 * @param min_var minimum test value for each parameter

427 * @param max_var maximum test value for each parameter

428 * @param simulation simulation to run

429 */

430 public static void extended_fourier_amplitude_sensitivity_test(NumberRef[] parameters

, double[] min_var,

431 double[] max_var, Simulation simulation) { ////

432 try {

433
434 // open new R connection

435 RConnection rc = new RConnection();

436 if (!rc.success())

437 return;

438
439 // argument for EFAST

440 String tmp = "";

441 for (int i = 0; i < parameters.length; i++)

442 tmp += String.format(",list(min=%s,max=%s)", min_var[i], max_var[i]);

443
444 // create EFAST object

445 rc.eval(String.format("f99 <- fast99(model = NULL, factors = %s, n=%s00, q = c

(%s), q.arg = list(%s))",

446 parameters.length, parameters.length, repStr("’qunif’", parameters.length

, ","), tmp.substring(1)));

447

APPENDIX A. SOURCE CODE 133

448 // parse parameter combinations

449 double[][] param_combs = parseMatrix(rc.eval("flat(as.matrix(f99$X))"),

parameters.length);

450
451 // run simulations for parameter combinations and store output

452 rc.eval("res = 0");

453 for (int i = 0; i < param_combs.length; i++) {

454 for (int j = 0; j < parameters.length; j++)

455 parameters[j].set(param_combs[i][j]);

456
457 simulation.run();

458 rc.eval(String.format("res[%s] <- %s", i + 1, simulation.getOutput()));

459 }

460
461 // label columns

462 for (int i = 0; i < parameters.length; i++)

463 rc.eval(String.format("colnames(f99$X)[%s] <- ’%s’", i + 1, parameters[i].

name()));

464
465 // hand over the simulation results to the EFAST object

466 rc.eval("tell(f99, res)");

467
468 // plot results

469 rc.X11();

470 rc.eval("plot(f99)");

471 rc.waitForClose();

472
473 } catch (Exception e) {

474
475 // print error message

476 String errorMsg = "extended_fourier_amplitude_sensitivity_test: " + e;

477 System.out.println(errorMsg);

478 Library.println(errorMsg);

479 }

480 } ////

481
482 /**
483 * convert double array to string

484 *
485 * @param arr double array

486 * @param delimiter delimiter

487 * @return String result

488 */

489 private static String joinStr(double[] arr, String delimiter) {

490 StringBuilder sb = new StringBuilder();

491 for (double dbl : arr) {

492 sb.append(delimiter);

493 sb.append(dbl);

494 }

APPENDIX A. SOURCE CODE 134

495 return sb.substring(1);

496 }

497
498 /**
499 * get repeated string version

500 *
501 * @param str string to repeat

502 * @param count number of repetitions

503 * @param delimiter delimiter

504 * @return String result

505 */

506 private static String repStr(String str, int count, String delimiter) {

507 StringBuilder sb = new StringBuilder();

508 for (int i = 0; i < count; i++) {

509 sb.append(delimiter);

510 sb.append(str);

511 }

512 return sb.substring(1);

513 }

514
515 /**
516 * parse double matrix from string array

517 *
518 * @param strarr string array

519 * @param colCount number of matrix columns

520 * @return double result

521 */

522 private static double[][] parseMatrix(String[] strarr, int colCount) {

523
524 // number of rows

525 int rowCount = strarr.length / colCount;

526
527 // input variables

528 double[][] res = new double[rowCount][colCount];

529
530 // parse each entry

531 int k = 0;

532 for (int i = 0; i < rowCount; i++)

533 for (int j = 0; j < colCount; j++)

534 res[i][j] = Double.parseDouble(strarr[k++].substring(4));

535
536 // return result

537 return res;

538 }

539
540 private static String validVarName(String name) {

541 String res = "";

542 String tmp = name;

543 if (name.length() > 0) {

APPENDIX A. SOURCE CODE 135

544 if (!Character.isLetter(name.charAt(0)))

545 tmp = "V" + name;

546 } else {

547 return "var";

548 }

549 for (int i = 0; i < tmp.length(); i++) {

550 char c = tmp.charAt(i);

551 if (Character.isLetter(c) Character.isDigit(c)) {

552 res += c;

553 } else {

554 res += "_";

555 }

556 }

557 return res;

558 }

559 }

	Abstract
	Contents
	Introduction
	Implementation Details
	Connecting R to Java
	Class "RConnection"
	Fields and Properties
	Functions
	Constructor

	Simulation Identification
	Interface "Simulation"
	Functions

	Passing Model Parameters
	Class "NumberRef"
	Fields and Properties
	Functions
	Constructors

	Preparing a Plant Model for Sensitivity Analysis
	Preparation Steps
	Plant Model Preparation Example

	Sensitivity Analysis Methods
	Call Arguments
	Class "Sensitivity"
	Functions
	Using R for Sensitivity Analysis

	Plugin Structure

	Mathematical Foundation
	Local Sensitivity Analysis
	Morris's Elementary Effects Screening
	Main And Interaction Effects On Extreme Values
	Partial (Rank) Correlation Coefficients (PCC/PRCC) and Standardized (Rank) Regression Coefficients (SRC/SRRC)
	Sobol's Method
	Extended Fourier Amplitude Sensitivity Test (EFAST)

	Sensitivity Analysis of Plant Models
	Beech Tree
	Local Sensitivity Analysis
	Morris's Elementary Effects Screening
	Main And Interaction Effects On Extreme Values
	Partial (Rank) Correlation Coefficients
	Standardized (Rank) Regression Coefficients
	Sobol's Method
	Extended Fourier Amplitude Sensitivity Test

	Assimilate Production Model
	Local Sensitivity Analysis
	Morris's Elementary Effects Screening
	Main And Interaction Effects On Extreme Values
	Partial (Rank) Correlation Coefficients
	Standardized (Rank) Regression Coefficients
	Sobol's Method
	Extended Fourier Amplitude Sensitivity Test

	Runtime and Memory Consumption
	Summary and Outlook
	Bibliography
	Source Code
	RConnection.java
	Simulation.java
	NumberRef.java
	Sensitivity.java

