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Preface

The software system which is described in this manual is still in development,

and also the underlying research activities have not come to an end. Thus only

a momentary state-of-the-art report can be given which will, besides describing

accurately the current implementation of GROGRA, also indicate gaps and future

research �elds. The interested GROGRA user is requested to make his own

experiences and to tell the author about any misbehaviour, uncertainties, open

problems or suggestions which come up.

The main part of GROGRA was developed during the DFG project Ku

847/1-1, \Formal description and computer based simulation of branching habit

and growth of some trees using L systems and fractals" (Postdoc program, du-

ration 1. 9. 1991 { 31. 8. 1993). Additional support was given by the Federal

Ministry of Research and Technology (BMFT) in the frame of the joint re-

search project \Ver�anderungsdynamik von Wald�okosystemen" (Dynamics of for-

est ecosystem change) of the Forest Ecosystems Research Centre at the Univer-

sity of G�ottingen (since 1. 1. 1994), namely in subproject A7{e2, \Morphological

model of tree growth", as well as in the predecessor project \Stability conditions

of forest ecosystems", subproject PM{3.2, \Investigations concerning crown ar-

chitecture" (1. 10. 1990 { 31. 12. 1993). The author gratefully acknowledges the

support from DFG and BMFT.

The research activities and the program development were carried out at the

Department of Forest Biometry and Informatics of the University of G�ottingen,

where a workgroup on plant modelling could be established. The author expresses

his heartly thanks to Professor B. Sloboda for his never-ending engagement for

the bene�t of this workgroup as well as for his constant encouragement. Special

thanks are due to Dipl.-Biol.Th. Fr

�

uh and Dipl.-Forstw.D. Lanwert for many

fruitful discussions and for the motivating atmosphere they helped maintaining.

The basic ideas and plannings for the interface to HYDRA (described in Section

5.5) originated from Th. Fr

�

uh.

Valuable impulses came also from the AMAP research team at the \Unit�e de

Mod�elisation" of the CIRAD (Montpellier), where the author had a two-months

working stay. Thanks to Ph. de Reffye, M. Jaeger, F. Blaise and all the

other members of AMAP at Montpellier for their hospitality and support.
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Preface to the second edition

Since the �rst edition is sold out now, it was necessary to create a second edition,

which will, however, not go to be printed, but will exclusively be available online

in the form of a Postscript �le.

No attempt was made to update the manual to the extensions of the GRO-

GRA software which were implemented since September 1994, when the �rst

edition was printed. The basic structure of the program remained unchanged.

For the extensions until September 1996 (Version 2.7), the reader is asked to

consult the appendix of the paper

Winfried Kurth: Some new formalisms for modelling the interac-

tions between plant architecture, competition and carbon allocation.

Bayreuther Forum

�

Okologie (in press),

which will also be made accessible online and which gives a complete documen-

tation. For the later extensions, more recent publications of the author and the

�le \readme", which is delivered with GROGRA, should be consulted.

The author wishes to express his thanks to all persons who have helped to

improve the software by using it, asking questions and giving critical comments.

Special thanks are due to G. Buck-Sorlin (formerly at the University of Wales,

Bangor, now at the IPK, Gatersleben).

Winfried Kurth

G�ottingen, December 19, 1997.



Introduction

GROGRA is a software, written in C language, which is designed primarily for

the creation of time series of three-dimensional, plant-like branching structures.

The acronym stands for Growth Grammar interpreter. GROGRA must not be

considered as a growth model for a speci�c plant species, but instead as a model

shell, able to create a great variety of structures, depending on its input. Its

input data are mainly given in the form of growth grammar �les, following a

speci�c syntax and semantics, extending the possibilities of the so-called Linden-

mayer systems (L systems; see [98]). In its nature as a model shell, GROGRA

is comparable to other software tools which are universal for a speci�c domain,

like STELLA for di�erential equation systems, SAS for statistical data analysis,

and MACSYMA or MATHEMATICA for formal calculus and geometry (though

GROGRA is not yet so advanced, of course).

GROGRA 2.4 is currently implemented in two versions: On an IBM-compa-

tible PC (with Intel 80286 or higher processor) under MS-DOS, and on a Silicon

Graphics Workstation (Iris Indigo R4000 with 24 bit XS graphics) under IRIX,

a UNIX derivative. The reader of this manual is assumed to have access to one

of these versions. The software GROGRA 2.4 will be distributed freely by the

author for scienti�c purposes (not for commercial use).

GROGRA 2.4 consists of about 394 KB (DOS), resp. 766 KB (UNIX) exe-

cutable code; the program source is about 15 000 lines long. Graphical output is

directed immediately to the screen, or to �les in HPGL, Postscript or AUTOCAD

format. Several data interfaces to other software tools (amongst them HYDRA,

GROBOL and 3dCLIP) are included, thus preparing the development of a carbon

production and allocation supermodel together with other research groups at the

Forest Ecosystems Research Centre.

However, in its current version GROGRA is mainly devoted to architectural

plant models and does not take carbon, energy or nutrient economy of plants into

account. In Chapter 1 of this treatise this structural approach is brie
ymotivated,

some references to related work are given, and the position of the approach in

the context of the modelling strategy of the Research Centre is indicated.

Chapter 2 will contain �rst an informal overview and then rigorous math-

ematical de�nitions concerning the rule language which is interpreted by GRO-

1



2 INTRODUCTION

GRA. It has mainly the purpose to show that the \sensitive grammars" of GRO-

GRA can be embedded in the framework of formal language theory (a part of

theoretical computer science and, at the same time, of algebra). There will be

no attempt to prove any theorems about sensitive growth grammars here. The

mathematical exploration of the subject would be a separate issue, deserving

its own elaboration. Section 2.2 requires some basic acquaintance in algebraic

issues (see, e.g., [71] or [109]). It can be omitted by readers not interested in

mathematical precision.

Chapter 3 contains the basic informations necessary to get GROGRA started,

in an informal style. Together with the examples in Chapter 6, the reader unfa-

miliar with GROGRA can use these explanations to get �rst experiences before

going into detail more deeply.

In Chapter 4, the rule language (stochastic, sensitive growth grammars)

of GROGRA is speci�ed | not in a mathematical framework, as in Section

2.2, but in words describing the actions which GROGRA will perform. Three

levels of description have to be distinguished: 1. The so-called turtle commands,

specifying a momentary spatial branching structure, 2. the L systems, giving the

development of structures, and 3. meta-information, governing the choice of L

system rules according to probability distributions (stochastic grammars) or to

the global context in the just generated structure (globally sensitive grammars).

Chapter 5 explains all menu items, graphical options and data interfaces of

the GROGRA software in an exhausting manner and gives also some informations

about its internal behaviour and way of representing geometrical data. This part

can also be used as a reference manual in the case of troubles with the software.

The examples in Chapter 6 have the purpose to help the reader in understanding

the somewhat abstract notions and explanations of the foregoing chapters.



Chapter 1

The role of growth grammars in

modelling forest ecosystems

1.1 General purposes of modelling

For designing mathematical models and implementing simulation systems, two

aims can be distinguished:

I. The design and application of models as an instrument of scienti�c research,

II. models as tools for planning and decision-making in practice.

These two purposes are not independent of each other. Before a model reaches

the level of practical applicability, there is normally a phase in which it is subject

of scienti�c research, including tests under controlled conditions. On the other

hand, even purely conceptual models without concrete applications in the �eld

can bring indirect bene�ts for practice if they enhance understanding.

Under aim I we collect such modelling purposes as the connection and in-

tegration of scienti�c results, their explanation, their further use for purposes

of experimental design, hypotheses testing, dependence and sensitivity analyses,

�nding knowledge gaps, as well as the development of appropriate description lan-

guages (this last item being a great part of the current work on GROGRA). There

are also situations in research when �eld measurements or experiments would be

too expensive, destructive or even impossible and where appropriate simulations

can overcome these di�culties to a certain extent. (This is e.g. true for measure-

ments of total leaf area of trees, for determining their fractal dimension, or for

complete matter exchange monitoring in forests.) Such stopgap models can also

be subsumed under aim I. Aim II, on the other hand, embraces extrapolation,

scenario making and prognosis (let us think of climate change models) as well as

e�orts to make scienti�c knowledge accessible to the man of practice (e.g. in the

shape of computer-based forestry management information systems).

3



4 THE ROLE OF GROWTH GRAMMARS

The GROGRA system is mainly devoted to aim I. It is primarily meant as an

integrative research tool referring to botanical knowledge, forest yield, the radi-

ation and water regime of tree crowns, competition, and (in the future) forest

damage symptoms. However, the development of GROGRA is part of an inte-

grated modelling strategy at the Forest Ecosystems Research Centre in G�ottingen

where aim-II-models like Geographical and Forestry Information Systems are also

included (see Fig. 3 below). Experiences from the work with GROGRA will �nd

their way into such close-to-application models. Other structural plant models

similar to GROGRA were even more directly motivated by practical needs like

yield calculation of co�ee [99], cotton [102] or fruit trees [23].

1.2 Systematisation of approaches

To understand and / or predict tree growth and forest dynamics, a lot of di�erent

mathematical models and simulation systems have been developed, reaching from

classical yield tables to physiologically based single-tree models. To bring some

order into the di�erent approaches, it is useful to arrange them in a triangle of

plant models (Fig. 1, [70]).
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Fig. 1: A triangle of plant models

At the extreme top, one �nds aggregated models which deal with whole plant

populations (e.g. forest stands) in a statistical manner, e.g. utilizing regression

analysis. When biological processes are modelled on a deeper level of causal and

functional relationships, we speak of process models (lower right corner of the

triangle). These are nowadays very common in ecology and are often expressed

in the formalism of di�erential equations. Typical examples are the TREEDYN

system of Bossel [16] as well as the single tree models for beech (Fagus sylvatica)

of Stickan et al. [114] and of Hoffmann [56].

But there exists still another type of models: Morphological models, i.e. descrip-
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tions of a plant's structure and development in space (lower left corner of the

triangle). This kind of modelling utilizes concepts like modularity (which is well-

known in botany, see [50], [51], [119], [95]), geometrical grammars (which are at

the heart of GROGRA) and statistics on a high-resolution level (e.g. concerning

the fate of meristems in di�erent shoot positions and di�erent ages, see e.g. [81],

[104], [9]).

Several intermediate forms of models exist (\inside the triangle"), but in

most of the common process models of plant growth there is only a very small

amount of three-dimensional structure present, and it is one of the aims of GRO-

GRA to establish links between the di�erent approaches and to show the useful-

ness and manageability of models with higher spatial resolution.

The \downward" dimension in the triangle of Fig. 1 can be identi�ed with

spatial or temporal resolution as well as with levels of process hierarchy in the

sense of hierarchy theory ([89], [116]). Hierarchy theory considers ecosystems

as determined by a complex net of interwoven processes which can be arranged

in units called holons which are grouped in hierarchical levels distinguished by

di�erent rates and velocities of process dynamics. E.g., forest succession takes

place on a higher level than the matter exchange of forest stands, which is itself on

a higher level than the biochemical metabolism in the cells. In hierarchy theory,

the processes on the higher levels exert a �ltering and ordering in
uence on the

lower levels, if the system is not in an instable situation which is characterized by

a \hierarchy break" in the sense of a determining in
uence of low-level processes

on the whole system's behaviour.

Hierarchy theory justi�es a \bottom-up approach" in understanding and

modelling plants and plant communities. A conceptual and even quantitative

understanding of low-level processes is considered essential to an understanding

of system behaviour, at least in system transition phases and unstable situa-

tions like those which are assumed to prevail in contemporary middle-European

forest ecosystems. Past failures of this approach can be ascribed to an insu�-

cient description of what is going on in the lower hierarchical levels, especially

with respect to the spatial structures underlying the processes (see [6]). It is

the promise of systems like GROGRA that by a better model of the complex

organism-environment boundary as well as of the branching system and its de-

velopment, some missing items can be added to the process models and that

thereby the predictive capabilities of models as far as higher levels (forest dy-

namics) are concerned can be enhanced. This two-step procedure is visualized in

Fig. 2: First, structures and functions have to be brought together at the basis,

i.e. on the low level of plant growth processes (double arrow at the bottom), and

in a second phase, by extracting condensed information and rescaling models,

propositions for the higher hierarchy levels shall be made (arrow aiming at the

top).
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Fig. 2: Main research directions in plant modelling (bottom-up approach)

The di�erent mathematical and simulation models currently at work in the

Forest Ecosystems Research Centre G�ottingen, together with their interconnec-

tions, can be inscribed into this triangle (Fig. 3). GROGRA appears clearly on

the \structural" side of this picture. The meaning of the other acronyms, as

well as short descriptions of the models, can be found in the G�ottingen Research

Centre joint application for 1994{1998 [34], Chapter \Modellbildung im Rahmen

des Forschungsansatzes des FZW" (p. 302 �).

Other researchers neglect the success chances of the bottom-up approach

and favorize independent higher-level system models which are assumed to pos-

sess their own simple rules [52]. Past failures are ascribed to the de�ciency of

not seeing these rules and to confusing the situation by including inappropriate

levels of description due to the bottom-up approach. But in the e�ort to deduce

appropriate abstract rules (especially concerning the connection between nutrient


ow and height growth strategy of trees), representatives of this research strategy

have designed models which include also some 3-dimensional plant structure and

development [53]. Thus the GROGRA morphological modelling approach seems

not to be con�ned to a certain research philosophy, but to be of some general

interest.
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Fig. 3: The models of the Forest Ecosystems Research Centre, G�ottingen

1.3 Purposes of morphological models

The attempt to construct three-dimensional models of tree structure and devel-

opment is motivated by several demands:

� To quantify photosynthesis, a canopy model for the simulation of light in-

terception is required. There is good evidence that such a model should be

three-dimensionally structured to give realistic results ([111], [26]). Espe-

cially for conifers, the localization of needles of di�erent age-classes in the

canopy plays an important role. Furthermore, Lanwert [74] has found

some in
uence of morphological trends like acrotony and branching order

on needle characteristics.

� Calculations of the mechanics of trees have to take some essential features

of the branching patterns into account ([85], [36]). Wind damages and the

in
uence of stand structure on mechanical stability are important ecological

items, especially for conifer stands.

� Three-dimensional structure is essential for investigations concerning the

mutual mechanical obstruction of plants (a phenomenon which is important

in competition and was called \phytosadism" by some botanists, see [37]).
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There exist already morphological models of plant development which can

simulate such e�ects [11].

� There are some reasons that also for a thorough understanding of the hy-

draulic architecture of trees the branching structure has to be taken into

account (for references see [40], [41]). Research in this direction could lead

to a better explanation of some damage patterns of forest decline, e.g. nee-

dle losses in certain crown sections, which can be caused by embolisms in

the water conducting system.

� Understanding the developmental dynamics of mixed species stands, which

are of increasing importance in contemporary forestry, requires to take spa-

tial structure and spatial reactions into account (see e.g. [96]).

� The modelling of matter exchanges in forest ecosystems can be improved if

the 3-dimensional arrangement of the interface between plant and environ-

ment is included.

� The morphological approach allows the inclusion of botanical phenomena

like the sprouting of sylleptic shoots, needle losses or crown damage patterns

into mathematical models. This can establish a �rst bridge between the

classical, descriptive world of botany and ecosystemic process models in the

sense of Section 1.2 above. The term \ecomorphological model" was coined

for this future perspective [107].

There is also an important methodological reason: There are strong demands for

integrated tree models which allow predictions concerning such di�erent topics

like stability against wind, competition strength, drought risk, timber production

and CO

2

gas exchange. But if one considers the di�erent spatial simpli�cations

of trees which are today in use within the models concerning these topics, it

becomes probable that a future common integration of all these approaches will

su�er from severe inconsistencies. This problem can be avoided if a common basis

is found for all the di�erent specialized models. And this basis will inevitably be

a morphological model, because morphology is common to all aspects of plant

structure (Fig. 4).

From a more philosophical viewpoint, the algorithmic approach of GRO-

GRA represents a step from description to construction, from analysis to syn-

thesis, and can be subsumed under the new research direction of \Arti�cial Life"

([72], [73]). As in the parallel case of \Arti�cial Intelligence", the main purpose

of these constructive e�orts lies in the e�ect to get a better understanding (of

life / of the human mind) by the attempt to construct arti�cial life (resp., intelli-

gence), although some motivating drive which lies in the claim of being a creator

can certainly not be neglected. In fact, realistic plant models have their place

in modern computer graphics ([80], [103]), and in the branch of man-machine-

communication which is called \virtual reality". Consequently, Prusinkiewicz
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and Lindenmayer attach to their book on L systems the subtitle \The virtual

laboratory" [98].
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1.4 The role of GROGRA

For the modelling activities of the Forest Ecosystems Research Centre at G�ottin-

gen, the current main topics are, according to [34]:

� the relations between structure and function in forest ecosystems, includ-

ing the interpretation of patterns as signals indicating changes, and the

recording and modelization of spatial heterogeneity,

� the carbon relations in forest ecosystems,

� the matter turnover in the soil,

� the elaboration of an area-based forest ecology information system and of

models for ecological forest enterprise management.

Besides that, some activity concerning the water relations of trees and forest

stands complement these main themes.

Fig. 5: Currently implemented data 
ow GROGRA | HYDRA

The above-mentioned topics are motivated by the relationships between the Re-

search Centre and the Forestry Faculty at G�ottingen and by their practical im-

portance in forestry. E.g., each forestry operation changes the structural setup of
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the ecosystem and thereby also the processes. Here lies the main future potential

of model approaches like GROGRA. Especially for the evaluation of operations

on the single-tree level (e.g. limbing) there is a need for models which take into

account the three-dimensional structure of stands and o�er at the same time

connections to process models re
ecting the in
uences of climate, nutrient avail-

ability, water status, CO

2

etc. Such combinedmodels will help the decision maker

in planning forestry operations, selecting the appropriate tree species for a given

stand and choosing optimal planting patterns (cf. [66]).

To achieve these goals, several connections between GROGRA and other

models have to be built up. The way how this will be realized will become clear

in more details in the section about interfaces and data formats (5.5). At present,

the connection is a \one way" data interface | e.g., from GROGRA to the tree-

internal water 
ow simulation software HYDRA (Fig. 5). Here, GROGRA can

interprete structural informations, either directly from measured trees (upper

left branch of the diagram) or (and this is the main purpose of GROGRA) from

growth grammar rules encorporating developmental and morphological laws, and

gives the resulting three-dimensional tree structure (central picture of the dia-

gram) via a data interface to HYDRA which simulates the daily courses of the

water potential and other hydraulic parameters in the branching system (an ex-

ample pro�le seen on the right).

6
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For future integrated models, a feedback loop will be necessary which will en-

able GROGRA to take results of the process models (here: results of HYDRA



12 THE ROLE OF GROWTH GRAMMARS

concerning the water supply of meristems) into account while simulating growth.

Then we arrive at a cyclic model structure as sketched in Fig. 6. Presently, such

a feedback is possible in GROGRA only in a very restricted sense (see Section 4.7

on \sensitivity" and the examples 6.9 { 6.11). Future extensions of GROGRA

will concentrate on this item.

1.5 Related approaches

Some of the earlier attempts to create three-dimensional tree structures exploited

the notion of self-similarity, which has its origin in geometry. Roughly spoken,

it means that inside an object a smaller copy of the whole object can be found.

A weaker version of self-similarity is self-a�nity, where the mapping relating

the object with its smaller copy is allowed to be an a�ne mapping instead of

a similarity. An example of a self-similar pattern often found in nature is the

logarithmic spiral.

For branching systems, the presence of self-similarity implies a high regu-

larity, a constant branching angle and constant length ratios between the branch

orders | properties which are seldom to be found in a pure manner in natural

trees. Simulations of trees based on strict self-similarity like some of those in

[2], [14], [44] and [87] appear therefore somehow arti�cial and lack a profound

botanical basis. | With GROGRA, it is an easy exercise to produce self-similar

structures, as will be seen in the examples section.

Fractality, often falsely mixed up with self-similarity, is more an analytic

than a constructive notion and comes from dimension theory. Essentially, a fractal

is an object which is space-�lling to a certain extent, describable by a dimension

between 2 and 3 (or between 1 and 2, if �gures in a plane are considered). Self-

similar constructions often lead to fractal structures, but not in every case. In

nature, fractal dimensions can be assigned to many di�erent objects, including

coastlines [82], landscapes (mountains), dust particles, vascular systems, leaves

[64], and also tree crowns and root systems. For the crowns of di�erent Rocky

Mountains conifers, Zeide and Pfeifer [120] have obtained fractal dimensions

between 2.13 and 2.76. However, as Rigaut has shown [106], as far as natural

objects are involved, the fractal description is often, like self-similarity, an over-

idealization and should better be replaced by semi-fractal models.

A tool for the fractal analysis of structures generated by GROGRA is

planned as a supplement to GROGRA, but at the time it is not possible to make

sound propositions about fractal dimensions of trees created by GROGRA. The

term \fractal" should therefore be avoided when speaking about those structures.

Re�ning the self-similar approach, Barnsley [4] and his co-workers have

obtained beautiful pictures of natural scenes, including forest landscapes, utiliz-

ing iterated function systems (IFS), that means, the iterated application of a set

of carefully selected a�ne transformations on a start �gure, resulting in a limit
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set with (calculable) fractal characteristics. The advantages of this approach are

the high degree of condensation of the relevant information for the picture, the

generality (whole stands can be modelled in the same manner as single trees) and

the close connection to fractal theory. However, there are also certain earnest

disadvantages, namely, the global e�ect of changes (to mimic the removal of a

single branch, it is necessary to compute the whole picture once again), a cer-

tain vagueness in the details (demonstrating the inadequacy of purely self-similar

constructions), and, most serious, the missing reference to botanical knowledge.

Some modellers of plant structures use aggregation techniques or cellular

automata. The �rst step is the discretization of space in quadratic pixels or their

three-dimensional analogues, voxels (i.e. cubic cells) [46]. The state of each cell

tells us whether it is occupied by a phytoelement or not (it may also contain addi-

tional information) and is changed in discrete time intervals according to certain

rules, the new state depending on the states of the neighbour cells. The rules

can simulate certain physical or biological processes like di�usion, aggregation

or growth. This technique was especially used for the simulation of root com-

petition in a growing forest stand [53]. The cellular automata (CA) approach is

quite di�erent from that of GROGRA | the spatial discretization of the GRO-

GRA structures is associated with the branching structure (shoots or internodes

as units) and not with an external cubic grid. However, there is an interface

which transforms GROGRA structures into �les containing grid occupation data

(see Section 5.5 for details), thus permitting a comparison with CA-generated

structures. | Discretization with respect to a cubic grid (\voxelization") is also

utilized as an organizational or calculation speed enhancing tool in some of the

advanced extensions of the AMAP software mentioned below ([11], [27]).

Another approach in modelling tree structure which has some theoretical

background | similar to fractality, but more speci�cally related to branching

structures | is the matrix method of Viennot et al. [117], [118]. It is based on a

re�ned form of Horton-Strahler analysis of branching patterns (determination of

bifurcation ratios), a method �rst introduced by hydrogeologists for the analysis

of river networks. The formalization of the method is carried out with notions

from combinatorial mathematics, and its use has led to seemingly realistic graph-

ical images of trees and leaves. However, the same criticism as for the methods

discussed above must be applied here, namely, that the connection to botany

is not very close. Especially, the ontogeny of branch development is ignored.

Furthermore, there is considerable evidence in the literature that branching ra-

tios can vary signi�cantly between trees of the same species and even between

branches of the same order in a single tree crown ([119], [57]) and therefore seem

to be not very well suited for modelling purposes.

A lot of ad-hoc methods for generating three-dimensional plant models have

been developed by di�erent authors to simulate special species, often restricting

themselves to a momentary picture of the plant, and seldom going beyond some
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elementary statistical methods on the theoretical side. As far as detailed �eld

measurements precede these modelling e�orts, they can partially serve as a data

source for GROGRA-interpretable rule systems. As an example we mention the

statistics on Sitka spruce branching and development by Cochrane and Ford

[22]. There are also several root system simulations, among them the model of

Henderson et al. for Sitka spruce roots ([54], [55]), which was included in a for-

mer, preliminary version of GROGRA as a separate root model. The increased

capabilities of the currently implemented type of stochastic growth grammars

made it unnecessary to include such restricted models any longer. | The Hen-

derson root model was extended and exploited for the purposes of the NAPAP

project in the USA (National Acidic Precipitation Assessment Program), see [65].

Other root simulations include that of Diggle [28], Pag

�

es and Ari

�

es [90] and

Pag

�

es and Kervella [91], which are partially of a more general character. It is

stated here (without a proof, because there was not enough time to concentrate

on this subject) that these simulations could essentially be encoded by stochastic

growth grammars and could then be done by GROGRA. Perhaps, in some cases

some minor extensions to the growth grammar language would have to be made.

| The experimental root systems generated by GROGRA until now and shown

in the examples section do not pretend to mimic a certain real species.

An ad hoc-model is also the architectural simulation of Norway spruce trees

(Picea abies (L.) Karst.) by Kranigk [68]. This model was developed at the

Forest Ecosystems Research Centre in G�ottingen like GROGRA and is parame-

trized for a spruce stand in the Lange Bramke research area (Harz mountains). It

is primarily based on botanical observations of Gruber ([47], [48]) and was used

for calculations of the light regime in the forest stand [45]. It is a static model,

i.e. the simulated trees do not grow, and it is restricted to one species. On the

other hand, it shows clearly the usefulness of high-resolution structural models

for radiation simulations and the realistic results obtainable thereby. GROGRA

will give more general and dynamic structural input for these simulations when

the already implemented interface between GROGRA and the 3D climate and

physiology model (3dCLIP) of the Institute for Bioclimatology in G�ottingen (see

Section 5.5) has passed its test phase and when growth grammars for more com-

plex tree arrangements are designed and validated. (For another ad hoc-model of

spruce trees see [75], for one of poplar trees see [20].)

When dynamical models, i.e. models not only re
ecting the architecture

of a plant at a given moment in time, but also simulating the development of

the structure, are demanded, one must have a clear concept of how growth of

plants and plant parts takes place. Botanical insight leads to the concept of

meristem-based modelling: The shape of the plant is the result of the activity of

its meristems (i.e., of its sprouting buds, responsible for primary shoot growth,

and of its cambial zone, responsible for growth in diameter). Other factors like

branch bending and mechanical stress [83] as well as branch shedding have also
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in
uence on the shape, but primarily the shape is seen as the trajectory of the

meristems and is therefore determined by the basic processes governing the \fates

of buds" [81], namely, death, pause, growth, rami�cation and (de-) di�erentiation

(leading eventually to the phenomenon of reiteration) | see [8], [100], [60], [9].

The meristem-based approach was used for simulationmodels of plant struc-

tures by de Reffye ([99], [100]) and by Bell ([7], [51]). Later on, the method

of de Reffye, which was �rst applied to co�ee trees, was further elaborated

([60], [11], [25], [104], [61], [12] and further work) and extended to a great variety

of plant species, including tropical ([24]) and temperate forest trees ([35], [19],

[104]). A research group was formed at the CIRAD (Centre de Coop�eration In-

ternationale en Recherche Agronomique pour le D�eveloppement) in Montpellier

(France) | namely, Ph. de Reffye, M. Jaeger, E. Costes, F. Blaise,

Y. Guedon, D. Barth

�

elemy and others | which initiated cooperations with

researchers at Strasbourg, Nancy, Bordeaux and Tokyo and adopted the name

AMAP, which stands for \Atelier for Modelization of the Architecture of Plants".

Besides producing marvellous synthetic images of plants, they made valuable con-

tributions to the theoretical basis of plant growth and architecture modelling:

� On the meristem level, stochastic processes are postulated, governing e.g.

the production of internodes, which can be analyzed by renewal theory

[105].

� Meristems can adapt discrete states, their branching behaviour can be sim-

ulated by Markov chains [5].

� Physiological age serves as a main organizational parameter governing meris-

tem potential and metamorphosis. This approach is comprised in the notion

of \reference axis" ([104], [61]).

� Recent extensions concern the secondary growth of trees and the inner

structure of the stem [101].

Other aspects, like the mechanics of branches or the reactions of the plant to

light and obstacles, are also represented in the more recent versions of the AMAP

software [11].

As was essentially already recognized by Franc�on [38], the AMAP model

can be formalized within the frame of grammars. It is subject of a planned com-

mon research program of CIRAD (Montpellier) and Forest Ecosystems Research

Centre (G�ottingen) to demonstrate this possibility at a non-trivial example. This

cooperation will at the same time establish an interface between GROGRA and

AMAP. Until this common project is carried out, it can only be stated that the

principal capabilities of the growth grammar approach can keep up with the ba-

sic features of AMAP (stochastic modelling of meristematic production, reference

axis, sensitivity to overshadowing and obstacles. . . ) as will be indicated by some

of the examples in Chapter 6.
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Lindenmayer systems (L systems) are named after the biologist Aristid

Lindenmayer (1925{1989) who introduced them as a formal tool to describe

the development of �lamentous and branching organisms, �rst (in 1968) in the

context of automata theory (see [77] and [98] for further early references). L

systems are parallel rewriting systems operating on words (strings) which can

describe geometrical structures. As replacement rule systems on discrete objects,

they are subject of formal language theory as a branch of theoretical computer

science, and a huge number of papers have since the early 70s investigated them

from this point of view.

However, the \pure" classical L systems have revealed themselves as some-

what too restricted to manage the great variety of possible plant architectures

and growth behaviour. Therefore, several extensions have been introduced, the

stochastic sensitive growth grammars of GROGRA, which are de�ned in detail

in Chapter 2, being one of them. Typical extensions were

� context sensitive L systems, where the applicability of a replacement rule

depends not only on the single symbol to which it is to be applied but also

on its neighbours (see [98] for more detailed de�nitions),

� stochastic L systems (named \kakuritsuteki L systems" by Nishida [88] in

his simulation of cypress shoots), where one of several applicable rules is

chosen in a random process with given probability,

� parametric L systems where each symbol may be complemented by a list of

numerical (i.e., real-valued) parameters. The rules may contain arithmeti-

cal expressions made up of those parameters, and conditions restricting

their applicability. These extensions were proposed rather early [76] and

exploited further by Prusinkiewicz and Lindenmayer [98] for pictures

of herbaceous plants.

The growth grammars of GROGRA incorporate all these extensions and go even

further. (Context sensitivity is replaced by global sensitivity.) Further variants

of L systems which are at the time not yet accepted by GROGRA are

� timed L systems [98] where a continuous time axis replaces the discrete

simulation steps of the classical L systems,

� map L systems and cellwork L systems ([98], [79]) which generalize the rule

based approach to planar, resp. space dividing structures like cell tissues.

(For the construction of surface structures like leaves, there exist also other theo-

retical approaches, e.g. modular maps [21]. See also [87] for a discussion of related

topics.)

L systems were used for the description of primitive organisms like algae [86]

and for the simulation of the 
owering behaviour of herbaceous plants ([39], [98]).
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L-system-created plant pictures were combined with IFS techniques [113] and

popularized, especially by Smith [112], under the name \graphtals" [115]. Goel,

Knox and Norman used them as part of an integrated biological model of corn

plants [42]. Implicitely, they introduced repetition operators, parametrization by

functions and equivalents of the rotation operators \RG" and \RV" of GROGRA

(see Sections 4.1, 4.3 and 4.5 below). However, their use of grammars di�ers in

one essential point from that which is intended primarily with GROGRA and

demonstrated in our examples: They use the dynamic character of an L system

derivation, i.e. the generation of subsequent \developmental steps" only as an

auxiliary tool for geometric de�nition; in their simulations the time steps implicit

to the grammar application process do not re
ect real development and aging

like in our examples. The developmental characteristics of the plant are in their

approach completely excluded from the rule part of the simulation system and

externalized into speci�c \growth pro�le" tables | a way of handling the dynamic

aspect of structure which may be appropriate in the case of smaller plants, but

which is not useful in the case of trees where the development of the branching

structure over a longer time is an essential part of growth.

Besides that, L systems were used for a lot of non-biological applications

([97], [43]), among them repeated tilings, weaving patterns, fractal music, com-

puter hardware con�gurations, architecture of buildings, and robotics. A fore-

runner of our two-phase growth grammars (Section 4.2 below) was used in this

context [43].

L systems are closely related to graph grammars, which are of growing

interest in theoretical computer science and in applications including topics like

pattern recognition, CAD and software engineering [13].

With few exceptions ([53], [65], [42]), the models mentioned so far are rather

con�ned to plant architecture and do not take the physiological basis of growth

(i.e. processes like photosynthesis, respiration, carbon gain and losses, nutrient

uptake) into account. This is also to a great extent true for the current version of

GROGRA which will be extended in this respect in the future. However, there

are some structural models already o�ering such a bridge to physiology.

The model of Pfreundt [94], which was developed at the Department of

Forest Biometry and Informatics, G�ottingen (like GROGRA), simulated the light

interception, photosynthesis and growth of a spruce stand. It was, however, not

a structural model in the strict sense: The tree crowns were modelled as hollow

paraboloids with the phytoelements distributed randomly inside. No branching

structure was included. But it allowed a simulation-based analysis of a practical

concept, that of \shadowing biomass", for estimating relative photosynthetic ca-

pacity at given positions in the canopy | a concept that can easily be transferred

to sensitive growth grammars (cf. Chapter 6, examples 6.10 and 6.11).

A model more similar to GROGRA in its structural component is that of
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Berger [10] for Ficus elastica and Ficus benjamina. Despite of its simplicity

and its 
aws in issues of tree morphology, it o�ers interesting connections between

growth, light availability and optimization assumptions.

A model for young poplar trees, ECOPHYS, was developed by Host et al.

[58], taking light, temperature, carbon exchange and translocation into account.

The model is based on �eld measurements on short-rotation poplar plantations

under near-optimal water and nutrient availability and gives quite realistic re-

sults. However, the architecture of the simulated juvenile trees is very simple (no

branching occurs).

A more ambitious modelling project is that of E. D. Ford, R. Ford,

Bassow and Kiester ([30], [33], [32], [6], [31]) which was �rst restricted to

single conifer branches and later extended to the \Simple Whole Tree" compound

model in the frame of the NAPAP project [65] concentrated on forest damage

caused by air pollution. Ford and Bassow criticize the traditional regression

models in forest ecosystem research (e.g. the \pipe model") for their lack in

causality and propose a \model structure based on branch units" [30]. \A more

precise description of the morphological construction of the growing tree and its

competitive environment, and the implicit positive and negative feedbacks, is

required" [6]. Morphology and phenology are seen as fundamental organizing

principles, and the prediction of the correct shape of the tree by the model is

appreciated as a valuable controlling criterion [31]. The structural model for

conifer branches takes leaf display, photosynthesis, phenology, carbon export to

the trunk and requirements for mechanical support of the branch (calculated

according to the approach of McMahon and Kronauer, [84]) into account

[33]. Sensitivity and non-sensitivity assumptions for branching behaviour are

investigated in computer experiments [32]. This research is in its intentions very

close to the GROGRA usage. Like the Ford model in the larger context of the

\Simple Whole Tree" compound model, GROGRA has to be coupled with other,

specialized models to ful�ll the requirements of ecosystem research.

Advantages of GROGRA in comparison with the above-mentioned models

lie in its mathematical foundation in formal language theory, and especially in

its generic character. However, to take account for physiological processes like

the Ford model does, it will be necessary to extend GROGRA, probably into

the direction of object-oriented modelling as it is utilized in recent plant growth

models of Perttunen et al. ([93], [108]) and Breckling [18].



Chapter 2

Stochastic sensitive growth

grammars: Mathematical

foundations

2.1 Overview

A classical Lindenmayer system (0L system; the \0" stands for \zero context")

consists of

� an alphabet �, consisting of a �nite number of symbols (e.g. a, b, c),

� a start string (or axiom) � which is made up of symbols from �

(e.g., aba),

� a set of replacement rules, each of the form

symbol �! string of symbols

(e.g.: b �! cca), which are to be applied in parallel to all symbols of a

string at time t in order to get a new string at time t+ 1.

The rewriting process, i.e. the application of the rules to the given string, will

normally be iterated several times. Thus we get a (potentially in�nite) sequence

of strings �

0

, �

1

, �

2

, . . . , where �

t+1

is obtained from �

t

by application of the

replacement rules, and �

0

= �. This rewriting process of strings, which forms

the heart of the L system modelling approach, is visualized in Fig. 7, where each

arrow stands for an application of the L system rules. We refer to the numbers

or timesteps 1, 2, 3. . . as generations and call the above-mentioned replacement

rules also generative rules.

19
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- - - -

� �

1

�

2

�

3

: : :

Fig. 7: Sequence of strings de�ned by an L system

However, we are not interested in strings, but in geometrical structures resembling

three-dimensional plant architecture. Therefore we will include in our de�nition

of a growth grammar, additionally to the above-mentioned three ingredients,

� a geometrical interpretation of the strings (i.e. a semantics) translating

strings into spatial structures (subsets of IR

3

).

More speci�cally, our geometrical interpretation will be a variant of the so-called

turtle geometry (see [1], [98]): Some symbols will be interpreted as commands for

a drawing, resp. branch-constructing device, the \turtle", which can be told by

these commands e.g. to move forward, to produce a cylindrical branch, to change

its direction or to change the length of the next forward moves. (The possible

turtle commands in GROGRA will be explained in full detail in Section 4.1).

This interpretation is applied to each string of the generated sequence �

1

,

�

2

, �

3

. . . of Fig. 7, yielding a sequence of geometrical structures S

1

, S

2

, S

3

. . . .

Hence we arrive at the situation visualized in Fig. 8. Here, the horizontal arrows

stand for the development governed by the generative rules as in Fig. 7, whereas

the vertical arrows correspond to the geometrical interpretation.

- - - -

? ? ?

� �

1

�

2

�

3

S

1

S

2

S

3

: : :

: : :

Fig. 8: Structure generation by a simple

growth grammar (L system with interpretation)

Only the structures S

1

, S

2

, S

3

. . . will be output of the GROGRA software. The

strings �

1

, �

2

, �

3

. . . used for their creation are only written temporarily into an

auxiliary �le and are (in the current GROGRA version) not subject of further

analysis once they have been used to construct the structures.

In a parametric L system [98], to each symbol there can be attached a �nite

list of real-valued parameters (we speak of modules instead of symbols in this
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case), e.g. a(7; 42; �0:5) instead of a. These modules form parametric strings,

i.e. strings of modules. The L system rules may now contain formal parameters,

e.g.

a(x; y; t) �! b(2 � x+ y; t) a(x; y; t+ 1) c:

If this rule is applied to, let us say, a(�1; 5; 4), we get the parametric string

b(3; 4) a(�1; 5; 5) c. Furthermore, conditions like (t = 0 && x > y=2) containing

the formal parameters may restrict the applicability of a rule.

In a stochastic L system, there may exist several rules with the same symbol

(or module) on the left-hand side, each of them being attributed by a probability.

(The probabilities of all rules having the same l.h.s. must sum up to 1.) In

the repeated application of rules, the choice is done randomly with the given

probabilities.

The inclusion of parameters and probabilities does not principally alter the

fundamental scheme of Fig. 8. The extensions imply that parameters appearing

in the strings �

1

, �

2

. . . can now have in
uence on the geometrical interpretation

(e.g., they can determine lengths, angles or thicknesses of geometrical objects be-

ing part of the structures S

1

, S

2

, . . . ), and that the generative process is no longer

necessarily deterministic (random choice of rules can lead to di�erent sequences

�

1

, �

2

, �

3

. . . from the same start string � ).

A further extension of the L system concept leads to the notion of two-phase

growth grammar , standing in a certain analogy to the \two-level grammars" of

vanWijngaarden [69]: One class of rules (\metarules" in [69], corresponding to

our generative rules) is used for abstract construction of objects, whereas another

class of rules (\hyperrules" in [69]) encodes further, special transformations of

these objects. Thus we introduce a second set of rules (possibly empty), named

interpretative rules or rules of the second phase in our terminology, which do not

di�er in their syntax from the generative rules, but which have another function:

Their application will intervene between the generation of a string �

k

and its

interpretation. So the creation of the structure S

k

will be delayed until an eventual

application of rules of the second phase has transformed �

k

into a string �

0

k

. (If

the set of interpretative rules is empty or if no such rule is applicable, we will

assume �

0

k

= �

k

). Fig. 9 shows this modi�ed structure generation process, with

the vertical double arrows indicating the application of interpretative rules.
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- - - -

? ? ?

? ? ?

� �

1

�

2

�

3

�

0

1

�

0

2

�

0

3

S

1

S

2

S

3

: : :

: : :

: : :

Fig. 9: Structure generation by a two-phase growth grammar

The introduction of two-phase grammars has proved very useful for abbreviating

complex geometrical constructions which stand in no connection with the devel-

opmental process modelled by the generative rules. Biologically, we may think

of structure-forming processes running on di�erent hierarchical levels or time-

scales, one of them handled as taking place \immediately" in the model and thus

requiring no generative step but only rules of the second phase.

Another complication arises when interactions between parts of a structure

have some in
uence on the further development of the structure. We can have

local interactions, e.g. between successive segments of a branch (Fig. 10 a), which

can be taken into account by context-sensitive grammars (see [98]), or far-reaching

interactions, e.g. overshadowing (Fig. 10 b), which require global sensitivity.
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Fig. 10: Local (a) and global (b) interactions in
uencing

the development of a structure representing a plant
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In globally sensitive growth grammars, functional parameters are allowed in the

generative rules which depend on the last generated geometrical structure. Hence

we have an in
uence from S

k

on the creation of �

k+1

(and thereby on S

k+1

),

indicated by dotted arrows in Fig. 11.

Fig. 11: Structure generation by a (globally)

sensitive growth grammar

Of course, sensitivity can be combined with the two-phase scheme of Fig.

9, leading to the �nal scheme of Fig. 12.

Fig. 12: Structure generation by a sensitive,

two-phase growth grammar

As the reference to the structures S

k

during rule application requires ad-

ditional computing time and memory, GROGRA handles sensitivity as a special

extension to be required by the user explicitely, but this is not re
ected in the

theoretical de�nitions.
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2.2 Mathematical de�nitions

If � is a nonempty set (an alphabet), let �

�

denote the set of all �nite strings

(words, �nite sequences) over � (i.e. �

�

=

S

1

i=0

�

i

), where the empty string,

denoted by , is included. The length i of a word w 2 �

�

is denoted by `(w).

Let IN

0

denote the set of non-negative integers, IN the positive integers, ZZ

all integers, and IR all real numbers. id stands for the identical mapping, P(A)

for the set of all subsets of a set A.

If � is an alphabet, an arity function on � is a function

� : � �! IN

0

:

We call (�, �) a parametric alphabet if � is an arity function on �.

De�nition 1: Let (�, �) be a parametric alphabet. A module m over (�, �) is

an element m = (a; �) 2 �� IR

�

with `(�) = �(a). We write m in the form

a(r

1

; r

2

; : : : ; r

k

);

if � = (r

1

; r

2

; : : : ; r

k

) and k = `(�) � 1, and simply as a, if k = 0, and we call

r

1

; : : : ; r

k

the actual parameters of the symbol a.

Let M(�; �) be the set of all modules over (�, �). A parametric string �

over (�, �) is an element of the set

M(�; �)

�

;

i.e. a �nite sequence of modules. (Cf. [98], p. 41{42.)

De�nition 2: Let � be an alphabet, called the set of formal variables, let (F ,

�) be a parametric alphabet, called the set of formal functions, and let the �nite

sets U , B, P , C and L be de�ned as follows:

U = f�; log; exp; sqrt; atan; atg; g;

B = f+; �; �; =; ^ g;

P = f(; ); ; g;

C = f<; >; <=; >=; =; == ; ! = g;

L = f&& ; jj ; ! g:

The set of arithmetical expressions over � (with respect to (F , �)) is the smallest

subset E of (� [ IR [ U [ B [ F [ P )

�

ful�lling

(a) � � E,

(b) IR � E,

(c) e 2 E =) (e) 2 E,

(d) e 2 E; u 2 U =) u(e) 2 E,

(e) e

1

; e

2

2 E; b 2 B =) e

1

b e

2

2 E,

(f) e

1

; : : : ; e

k

2 E; f 2 F; �(f) = k =) f(e

1

; : : : ; e

k

) 2 E.
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The set of conditional expressions over � (w.r.t. (F , �)) is the smallest subset C

of (� [ IR [ U [B [ F [ P [ C [ L)

�

ful�lling

(g) 2 C,

(h) e

1

; e

2

2 E; c 2 C =) e

1

c e

2

2 C,

(i) g 2 C =) (g) 2 C,

(j) g 2 C =) !g 2 C,

(k) g; h 2 C =) g && h 2 C and g jj h 2 C.

Thus the syntax of arithmetical and conditional expressions resembles the usual

notational conventions in the programming language C, with some extensions.

Remark. In GROGRA, the unary oparator (underline) is written after its

argument instead of writing it in front. The unary operators � and are also

allowed without their argument being enclosed in parentheses (as required in (d)

above) if this argument is an atomic expression, i.e. an element of � or IR. In

the case of a nullary function symbol, f is written instead of f(). For IR one

has, of course, to substitute the set of 
oating point numbers representable by

the available machine.

De�nition 3: Let � be an alphabet, E(�) the set of arithmetical and C(�) the

set of conditional expressions over �. Let h be a mapping which assigns to each

f 2 F a function

h(f) : IR

�(f)

�! IR [ fundefg:

Let b be a function

b : � �! IR ;

a so-called instantiation (or substitution). Then the induced evaluation

�

b on E(�)

(with respect to h) is the function

�

b : E(�) �! IR [ fundefg

de�ned as the homomorphism on the term algebra E(�) ful�lling

�

bj� = b,

�

bjIR =

id,

�

b(f(e

1

; : : : ; e

k

)) = h(f)(

�

b(e

1

); : : : ;

�

b(e

k

)), and interpreting the unary and

binary operators from U and B as their counterparts on IR, i.e.

�

b(e

1

+ e

2

) =

�

b(e

1

) +

�

b(e

2

);

etc. (The binary operator ^ corresponds to exponentiation, the unary operator

atan to the arcustangens function, atg(x) is evaluated as arctan(� � x=180), and

corresponds to id. The usual priority rules are obeyed.) Expressions without

meaning in IR , like log(-1), are sent to undef by

�

b.

The induced evaluation

^

b on C(�) (with respect to h) is de�ned as

^

b : C(�) �! ftrue; false; undef g;

^

b( ) = true;
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^

b(e

1

c e

2

) = true if

�

b(e

1

) c

�

b(e

2

) is valid in IR,

^

b(e

1

c e

2

) = false if

�

b(e

1

) c

�

b(e

2

) is invalid in IR,

^

b(e

1

c e

2

) = undef i�

�

b(e

1

) = undef or

�

b(e

2

) = undef;

and as a homomorphism on the boolean terms in C(�), interpreting ! as not, &&

as and, and jj as or (where undef is everywhere treated as an absorbing element).

The comparison operators = and == are synonymous, and ! = stands for 6=, <=

for �, >= for �.

If (�, �) is a parametric alphabet, � = (a; � ) 2 ���

�

with `(� ) = �(a) (also

written in the form a(x

1

; x

2

; : : : ; x

�(a)

)) with � consisting of pairwise distinct

variables x

i

2 �, and m = a(r

1

; r

2

; : : : ; r

�(a)

) 2 M(�; �) is a module with the

same a 2 �, then we speak of a matching between � and m. The instantiation

b : � �! IR de�ned by

b(x) =

�

r

i

if x = x

i

,

0 if x does not appear in �

is called the instantiation de�ned by the matching of � and m.

De�nition 4: An attributed geometrical structure (with p attributes) is a �nite

set fU

1

; U

2

; : : : ; U

n

g with

U

k

2 P(IR

3

)� IR

p

(k = 1; 2; : : : ; n)

(p, n 2 IN

0

). Its elementsU

k

are called elementary units. The set of all attributed

geometrical structures with p attributes is denoted by G

p

.

The elementary units are to be interpreted in the applications of GROGRA

as plant parts like shoots (growth units), internodes, leaves or 
owers, which are

not di�erentiated further in the model at interest. A typical attribute is, e.g., the

needle surface of a conifer shoot.

De�nition 5: Let (�, �) be a parametric alphabet and p 2 IN

0

. A geometrical

interpretation is a mapping

I : M(�; �)

�

� IN �! P(IR

3

)� IR

p

with I(�; j) = (;; 0; : : : ; 0) for all j > `(�). (The integer argument j is meant

to mark a position in the string �.) The induced interpretation of I onM(�; �)

�

is the mapping

~

I : M(�; �)

�

�! G

p

de�ned by

~

I(�) = fI(�; j) j 1 � j � `(�)g. The elementary unit associated to

m

s

2 M(�; �) in the string � = m

1

: : :m

n

2 M(�; �)

�

(m, s 2 IN , s � n) is

given by

I(�; s):
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That means, the geometrical interpretation of a string is the attributed geome-

trical structure built up from the interpretations of all of its modules. Note that

the string � itself is part of the argument of I | hence the interpretation of a

module is in general not independent of the context in which it stands.

However, we can restrict this dependence to some extent.

De�nition 6: A geometrical interpretation I is called undisturbing if for all k,

s 2 IN and all m

1

; : : : ; m

k+s

2M(�; �),

I(m

1

: : :m

k

m

k+1

: : :m

k+s

; k) = I(m

1

: : :m

k

; k);

that is, if the interpretation of a module is independent of the modules coming

after it in the string.

To specify an undisturbing interpretation, it is su�cient to specify

i(�) := I(�; `(�))

for all � 2M(�; �)

�

. The induced interpretation is then

~

i(�) = fi(�) j � pre�x of the string � g 2 G

p

: (�)

The geometrical interpretation used by GROGRA is undisturbing if the usage of

method calls (see Section 4.6, p. 74) is excluded.

More speci�cally, we can de�ne turtle geometry as a special undisturbing geome-

trical interpretation with the help of an in�nite pushdown automaton (cf. [109]),

the turtle.

De�nition 7: De�ne the turtle command vocabulary (�, �), � = �

0

[ �

1

,

�

0

:= fL

0

; D

0

; V

0

; F

0

; f

0

; RG; RV

0

; +; �; $; [; ]; %g

and

�

1

:= f L; L+; L�; Ll; Ll+; Ll�; D; D+; D�; Dl; Dl+; Dl�;

V; V +; V �; V l; V l+; V l�; F; F+; F�; f; f+; f�; @;

RH; RL; RU; RV; RV +; RV � g;

with �(a) = 0 if a 2 �

0

and �(a) = 1 if a 2 �

1

. Let p 2 IN, p � 3. Let S be the

set of states of the turtle, de�ned as

S :=

�

((IR

3

)

4

� IR

p

)

�

n f g

�

� ((IR

3

)

4

� IR

p

)� ZZ :

We refer to the elements of S in the form

(�s; s

L

; r);
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where s 2 (IR

3

)

4

� IR

p

is the last element of the non-empty string in the �rst

component, called the actual state, s

L

2 (IR

3

)

4

� IR

p

is the second component,

called the local state, and r 2 ZZ is named the relevance counter . � is called the

actual stack content . The actual state is written s = (P; H; L; U; `; d; v; : : : )

with P , H, L, U 2 IR

3

, `, d, v, : : : 2 IR, and the local state analogously

s

L

= (P

L

; H

L

; L

L

; U

L

; `

L

; d

L

; v

L

; : : : ). (Note that, as p � 3, at least the

three components `, d, v from IR must exist.) In the following, let (s)

L

denote

the state obtained from s by replacing all the real-valued attributes `, d, v, . . .

by their analogues from s

L

, namely `

L

, d

L

, v

L

, . . . .

We refer to P as the turtle position, to H as its head direction, to L as its left

direction, to U as its upward direction, to ` as its steplength, to d as its diameter ,

and to v as its vertical tendency. The vectors H, L, U form an orthonormal basis

of IR

3

. It is assumed that P

L

= P , H

L

= H, L

L

= L, U

L

= U .

The turtle is de�ned as the quintuplet

((�; �); S; s

0

; t; w);

where s

0

2 (IR

3

)

4

� IR

p

is the initial state,

t : M(�; �)� S �! S

the transition function, and

w : M(�; �) � S �! P(IR

3

)� IR

p

the output function (see, e.g., [109] or [17] for background on automata theory),

which are de�ned in detail in the following.

s

0

:= ((0; 0; 0); (0; 0; 1) (�1; 0; 0); (0; �1; 0); `

g

; d

g

; v

g

; 0; : : : );

where `

g

, d

g

, v

g

2 IR are some �xed values.

For r � 0:

t(a; (�s; s

L

; r)) = (�s; s

L

; r) if a 6= [ ; ] ;

t( [ ; (�s; s

L

; r)) = (�s; s

L

; r � 1);

t( ] ; (�s; s

L

; r)) = (�s; s

L

; r + 1):

For r > 0:

t( [ ; (�s; s

L

; r)) = (�ss; s

L

; r);

t( ] ; (�s; s

L

; r)) =

�

(�

0

s

1

; s

1

; r) if � = �

0

s

1

,

(s

0

; s

0

; r) if � = ,

t(%; (�s; s

L

; r)) = (�s; s

L

; 0):
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For r > 0, a 2 �

0

, a 6= [; ]; %:

t(a; (�s; s

L

; r)) = (�s

0

; s

0

L

; r); where

for a = L

0

: s

0

= (P; H; L; U; `

g

; d; v; : : : ),

s

0

L

= (P; H; L; U; `

g

; d

L

; v

L

; : : : ),

for a = D

0

; V

0

: analogously with d

g

, v

g

substituted for d, resp. v,

for a = F

0

: s

0

= (P + `

L

�H; H; L; U; `; d; v; : : : ),

s

0

L

= (P + `

L

�H; H; L; U; `; d; v

L

; : : : ),

for a = f

0

: s

0

= (P + ` �H; H; L; U; `; d; v; : : : ),

s

0

L

= (s

0

)

L

,

for a = RG: let H = (h

x

; h

y

; h

z

).

s

0

=

8

>

>

>

<

>

>

>

:

(P; (0; 0; �1); (h

2

x

+ h

2

y

)

�1=2

� (�h

y

; h

x

; 0);

(h

2

x

+ h

2

y

)

�1=2

� (h

x

; h

y

; 0); `; d; v; : : : ) if h

2

x

+ h

2

y

6= 0,

(P; (0; 0; �1); L; �U; `; d; v; : : : ) if H = (0; 0; 1),

(P; (0; 0; �1); L; U; `; d; v; : : : ) if H = (0; 0; �1),

s

0

L

= (s

0

)

L

,

for a = RV

0

: let J = H � v

L

� (0; 0; 1); J

0

= J=norm(J).

(Here, norm(x

1

, x

2

, x

3

) = (x

2

1

+ x

2

2

+ x

2

3

)

1=2

.)

s

0

=

�

(P; J

0

; L; J

0

� L; `; d; v; : : : ) if J 6= 0,

s if J = 0,

s

0

L

=

(

(P; J

0

; L; J

0

� L; `

L

; d

L

; v; : : : ) if J 6= 0,

(P; H; L; U; `

L

; d

L

; v; : : : ) if J = 0.

for a = +: same result as for a = RU with a �xed argument

w

g

2 IR (see below)

for a = �: same result as for a = RU with the argument �w

g

,

for a = $: let H = (h

x

; h

y

; h

z

), J = (h

2

x

+ h

2

y

)

�1=2

� (�h

y

; h

x

; 0).

s

0

=

�

(P; H; J; H � J; `; d; v; : : : ) if h

2

x

+ h

2

y

6= 0,

s otherwise,

s

0

L

= (s

0

)

L

.

For r > 0, a 2 �

1

, p 2 IR :

t(a(p); (�s; s

L

; r)) = (�s

0

; s

0

L

; r); where
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for a = L: s

0

= (P; H; L; U; p; d; v; : : : ),

s

0

L

= (P; H; L; U; p; d

L

; v

L

; : : : ),

for a = L+: s

0

= (P; H; L; U; ` + p; d; v; : : : ),

s

0

L

= (P; H; L; U; `+ p; d

L

; v

L

; : : : ),

for a = L�: s

0

= (P; H; L; U; ` � p; d; v; : : : ),

s

0

L

= (P; H; L; U; ` � p; d

L

; v

L

; : : : ),

for a = Ll: s

0

= s,

s

0

L

= (P; H; L; U; p; d

L

; v

L

; : : : ),

for a = Ll+: s

0

= s,

s

0

L

= (P; H; L; U; `+ p; d

L

; v

L

; : : : ),

for a = Ll�: s

0

= s,

s

0

L

= (P; H; L; U; ` � p; d

L

; v

L

; : : : ),

for a beginning with D or V :

analogously, with d (resp., v) as the component to be replaced,

for a = F : s

0

= (P + p �H; H; L; U; `; d; v; : : : ),

s

0

L

= (P + p �H; H; L; U; `; d; v

L

; : : : ),

for a = F+: s

0

= (P + (p + `

L

) �H; H; L; U; `; d; v; : : : ),

s

0

L

= (P + (p+ `

L

) �H; H; L; U; `; d; v

L

; : : : ),

for a = F�: s

0

= (P + p � `

L

�H; H; L; U; `; d; v; : : : ),

s

0

L

= (P + p � `

L

�H; H; L; U; `; d; v

L

; : : : ),

for a = f : s

0

= (P + p �H; H; L; U; `; d; v; : : : ),

s

0

L

= (s

0

)

L

,

for a = f+: s

0

= (P + (p + `) �H; H; L; U; `; d; v; : : : ),

s

0

L

= (s

0

)

L

,

for a = f�: s

0

= (P + p � ` �H; H; L; U; `; d; v; : : : ),

s

0

L

= (s

0

)

L

,

for a = @: s

0

= (P + (p � 1) � ` �H; H; L; U; `; d; v; : : : ),

s

0

L

= (s

0

)

L

,

for a = RH: let 
 = � � p=180,

s

0

= (P; H; L � cos 
 + U � sin 
; U � cos 
 � L � sin 
; `; d; v; : : : ),

s

0

L

= (s

0

)

L

,

for a = RL: let 
 = � � p=180,

s

0

= (P; H � cos 
 + U � sin 
; L; U � cos 
 �H � sin 
; `; d; v; : : : ),

s

0

L

= (s

0

)

L

,

for a = RU : let 
 = � � p=180,

s

0

= (P; H � cos 
 � L � sin 
; H � sin 
 + L � cos 
; U; `; d; v; : : : ),

s

0

L

= (s

0

)

L

,

for a = RV : let J = H � p � (0; 0; 1), J

0

= J=norm(J),

s

0

=

�

(P; J

0

; L; J

0

� L; `; d; v; : : : ) if J 6= 0,

s if J = 0,

s

0

L

=

(

(P; J

0

; L; J

0

� L; `

L

; d

L

; v; : : : ) if J 6= 0,

(P; H; L; U; `

L

; d

L

; v; : : : ) if J = 0,

for a = RV + or a = RV �: Analogously to a = RV with

J = H � (v

L

+ p) � (0; 0; 1), resp. J = H � v

L

� p � (0; 0; 1).
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The output function is de�ned by

w(a; (�s; s

L

; r)) = (;; 0; 0; : : : ) if r � 0 or a =2 fF

0

; F; F+; F� g;

and, if r > 0, let

u =

8

>

>

>

<

>

>

>

:

`

L

if a = F

0

,

p if a = F with argument p,

p + `

L

if a = F+ with argument p,

p � `

L

if a = F� with argument p.

Furthermore, Q := P + u �H.

Then w(a; (�s; s

L

; r)) is the closed cylinder with middle axis PQ and diameter

d

L

.

(The restriction to cylindrical elementary units is not inherent in the turtle geo-

metry approach and could easily be overcome by the introduction of other geo-

metrical elements, e.g. for leaves, 
owers, fruits etc. | the current GROGRA

version produces for the sake of simplicity only \pure" branching structures made

up of cylindrical elements representing \shoots".)

Now that we have de�ned the transition function t and the output function

w, we can de�ne recursively (as it is common for automata) the induced transition

function on strings,

~

t : M(�; �)

�

�! S;

by

~

t( ) = (s

0

; s

0

; 1);

~

t(�m) = t(m;

~

t(�)) (m 2M(�; �); � 2M(�; �)

�

);

and the geometrical interpretation (in the simpli�ed version for the undisturbing

case)

i : M(�; �)

�

�! P(IR

3

)� IR

p

by

i( ) = (;; 0; 0; : : : );

i(�m) = w(m;

~

t(�)) (m 2M(�; �); � 2M(�; �)

�

):

The induced interpretation is now yielded by (�) above (p. 27).
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Remark. In GROGRA, the index \0" in the nullary symbols L

0

, D

0

, V

0

, F

0

,

f

0

, RV

0

is left away. This indexing was only made to distinguish them from the

corresponding unary symbols to avoid a formal confusion. GROGRA registrates

automatically whether an L, D etc. is followed by an argument or not.

Besides L, D, V there can be arbitrarily many further commands to change

additional attributes in the same manner as `, d and v. In GROGRA, there is

N (in the variants N without argument and N , N+, N�, Nl, Nl+, Nl� with

argument) to manipulate a leaf surface attribute and P (only in the variants P

without arguments and P as well as P l with an integer argument) to specify

a colour. Furthermore, there are global index-manipulating commands (In =,

In+ =, In� =, Jn =, Jn+ =, Jn� =) with an integer n and a further argument,

and method calls (Mn), which were excluded in this formal de�nition but could

be included without great di�culty.

See Section 4.1 (p. 50) for a more intuitive explanation of the complete turtle

language.

To ascertain the greatest possible degree of generality, we do not refer to

turtle geometry in the following de�nitions of growth grammars. Any kind of

geometrical interpretation of strings in the sense of De�nition 5 will be permitted.

De�nition 8: Let � be a �xed alphabet, called the set of formal variables, and

(F , �) a �xed parametric alphabet, called the set of formal functions.

A (non-sensitive, 1-phase, stochastic, conditional) growth grammar (with respect

to � and (F , �)) is a quintuplet

G = ((�; �); �; R; I;  );

where (�, �) is a parametric alphabet, � 2 M(�; �)

�

is a parametric string,

called the start string (or axiom),

R � C(�)� (�� �

�

)� (�� E(�)

�

)

�

� E(�)

is a totally ordered, �nite set of rules (E(�) and C(�) being the set of arithmetical,

resp. conditional expressions over � w.r.t. (F , �), see Def. 2, p. 24),

I : M(�; �)

�

� IN �! P(IR

3

)� IR

p

(p 2 IN

0

) is a geometrical interpretation (see Def. 5), and  : IN�IN �! [0; 1]

is an in�nite matrix of random numbers, uniformly distributed in the interval

[0; 1]. Each rule is written in the form

(
) � �! � ?�;

where 
 2 C(�) is the (possibly empty) condition, � 2 �� �

�

the left-hand side,

� 2 (� � �(�)

�

)

�

the right-hand side and � 2 E(�) the probability expression.

Herein, the following restrictions must be ful�lled:
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(1) No variable x 2 � appears twice in �,

(2) if � = (a; � ), a 2 �, � 2 �

�

, and � = (a

1

; '

1

) (a

2

; '

2

) � � � (a

k

; '

k

),

a

i

2 �, '

i

2 E(�)

�

, then `(� ) = �(a) and `('

i

) = �(a

i

) (i = 1; 2; : : : k),

i.e. the arities have to be respected,

(3) each formal variable x 2 � appearing in the expressions 
, � or � must

also appear in �, i.e. no free variables are permitted. (They come, however,

indirectly into play via the formal function alphabet, (F , �).)

� 2 � � �

�

is written in the form a(x

1

; x

2

; : : : ; x

�(a)

), and analogously each

component of � in the form a

i

(e

1;i

; e

2;i

; : : : ; e

�(a

i

);i

), where a

i

2 � and e

j;i

2 E(�).

A rule is potentially applicable to a module m = a(r

1

; : : : ; r

�(a)

) 2 M(�; �) i�

the following three conditions are ful�lled:

(a) � matches with m (see Def. 3), de�ning the instantiation b : � �! IR,

(b)

^

b(
) = true,

(c)

�

b(�) > 0.

(Herein, the speci�cation of a �xed function instantiation h on (F , �) like in Def.

3, p. 25, is presupposed.)

Let R

1

, R

2

, . . . , R

n

be the list of all rules which are potentially applicable to m,

ordered according to the total ordering on R. The rule R

k

is actually applicable

to m in the t-th step and in the s-th position (s, t 2 IN ) if

(c

0

)

k�1

X

i=1

�

b

k

(�

k

) <  (t; s) �

k

X

i=1

�

b

k

(�

k

):

(Note that a potentially applicable rule is excluded from actual applicability if

the sum of the evaluated probabilities of the potentially applicable rules coming

\earlier" in the list exceeds 1. This implies especially that in a situation when

several rules with probability 1 are potentially applicable, the �rst one is taken for

actual application. | Note further that at most 1 rule can be actually applicable.)

The result of the application of the actually applicable rule (
) � �! � ?�,

where � = a

1

(e

11

; : : : ; e

�(a

1

)1

) � � � a

k

(e

1k

; : : : ; e

�(a

k

)k

), to the module m =

a(r

1

; : : : ; r

k

) is the parametric string

�

m

:= a

1

(

�

b(e

11

); : : : ;

�

b(e

�(a

1

)1

)) � � � a

k

(

�

b(e

1k

); : : : ;

�

b(e

�(a

k

)k

));

where b is again the instantiation de�ned by the matching of � and m.

The result of the application of G to m in the t-th step and in the s-th position

(s, t 2 IN ) is

G

t;s

(m) :=

8

>

<

>

:

�

m

; if there is a rule (
) � �! � ?� actually applicable

to m in the t-th step and in the s-th position,

m; if no such rule exists.
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That means that modules to which no rule is applicable remain unchanged.

The result of the application of G to the parametric string � = m

1

m

2

� � �m

n

2

M(�; �)

�

in the t-th step (t 2 IN) is the parametric string

G

t

(�) := G

t;1

(m

1

) G

t;2

(m

2

) � � � G

t;n

(m

n

) 2M(�; �)

�

:

The sequence of strings generated by G is the in�nite sequence of parametric

strings (�

0

; �

1

; �

2

; : : : ) 2 (M(�; �)

�

)

IN

0

with

�

0

= �;

�

t

= G

t

(�

t�1

) (t 2 IN):

The sequence of structures generated by G is the in�nite sequence of attributed

geometrical structures

(

~

I(�

1

);

~

I(�

2

);

~

I(�

3

); : : : ) 2 G

IN

p

where

~

I is the interpretation on M(�; �)

�

induced by I.

Remark. Nondeterminism is excluded from De�nition 8 by the requirement of

an ordering of the rule set and by the inclusion of the �xed random number

table  . The rule choice process could be controlled by another strategy if these

requirements are dropped. In the actual GROGRA implementation, the reference

to the number table  is replaced by a runtime call to a pseudorandom number

generator each time (c

0

) is evaluated.

De�nition 9: Let � and (F , �) be �xed alphabets like in De�nition 8. A (non-

sensitive, stochastic, conditional) 2-phase growth grammar (with respect to � and

(F , �)) is a 7-tuplet

G = ((�; �); �; R

1

; R

2

; I;  

1

;  

2

)

such that H := ((�; �); �; R

1

; I;  

1

) is a 1-phase growth grammar, R

2

�

C(�)�(���

�

)�(��E(�)

�

)

�

�E(�) is a totally ordered, �nite set of rules ful�lling

the same restrictions as R

1

(see De�nition 8), and  

2

: IN � IN �! [0; 1] is

another random matrix like  

1

.

The elements of R

1

are called generative rules (or �rst phase rules), the elements

of R

2

interpretative rules (or second phase rules).

Potential and actual applicability of an interpretative rule to a modulem and the

result of its application are de�ned in the same manner as for generative rules,

taken  

2

substituted for  

1

.

The result of the interpretative application of G to m in the t-th step and in the

s-th position (s, t 2 IN) is

~

G

t;s

(m) :=

8

>

>

>

<

>

>

>

:

�

m

(see Def. 8), if there is an interpretative rule

(
) � �! � ?� actually applicable to m

in the t-th step and in the s-th position,

m if no such interpretative rule exists.
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The result of the interpretative application of G to a parametric string � =

m

1

m

2

� � �m

n

2M(�; �)

�

in the t-th step (t 2 IN) is the parametric string

~

G

t

(�) :=

~

G

t;1

(m

1

)

~

G

t;2

(m

2

) � � �

~

G

t;n

(m

n

) 2M(�; �)

�

:

The sequence of structures generated by G is the in�nite sequence of attributed

geometrical structures

(S

1

; S

2

; S

3

; : : : ) 2 G

IN

p

derived from the sequence of strings generated by the corresponding 1-phase

grammar H through �

0

t

:=

~

G

t

(�

t

) and S

t

:=

~

I(�

0

t

) for t = 1; 2; 3; : : : (cf. Fig.

9, page 21).

De�nition 10: Let � be a �xed alphabet, called the set of formal variables. Let

(F , �) be a parametric alphabet, the set of formal functions, and let F be splitted

into F = F

N

[ F

S

(F

N

\ F

S

= ;). F

N

is called the set of nonsensitive function

symbols, F

S

the set of sensitive function symbols. Let h

N

be a mapping on F

N

,

associating to each f 2 F

N

a function

h

N

(f) : IR

�(f)

�! IR [ fundefg;

and h

S

a mapping on F

S

, associating to each f 2 F

S

a function

h

S

(f) : (P(IR

3

)� IR

p

)�G

p

� IR

�(f)

�! IR [ fundefg:

A (1-phase) sensitive growth grammar (with respect to � and (F , �)) is a 7-tuplet

G = ((�; �); h

N

; h

S

; �; R; I;  );

such that ((�; �); �; R; I;  ) ful�lls the formal requirements of a non-sensitive

growth grammar (see Def. 8). The speci�cation of the interpretation of function

symbols from F

S

, necessary to de�ne potential / actual applicability of rules

and application results, is given recursively. Let f(e

1

; : : : ; e

k

) appear in an

expression on the r.h.s. of a rule, f 2 F

S

, e

1

; : : : ; e

k

2 E(�). The evaluation

of f in the t-th step with respect to the module m

s

2 M(�; �) in the string

�

t�1

= m

1

� � �m

n

2M(�; �)

�

(t, s, n 2 IN, s � n) is

�

b(f(e

1

; : : : ; e

k

)) =

(

h

S

(f) ((;; 0; 0; : : :); ;;

�

b(e

1

); : : : ;

�

b(e

k

)) if t = 1,

h

S

(f) (I(�

t�1

; s);

~

I(�

t�1

);

�

b(e

1

); : : : ;

�

b(e

k

)) if t > 1.

For f 2 F

N

, the evaluation is done in the standard manner (see Def. 3, p. 25).

In this recursive de�nition, (�

0

; �

1

; �

2

; : : :) is the sequence of strings generated

by G, de�ned in the same way as in De�nition 8.
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Note that the calculation of the result of the application of a rule to a module

appearing in string �

t

depends on the precedent structure

~

I(�

t�1

) and on the

elementary unit I(�

t�1

; s) associated to the module in this structure (Fig. 13;

see also Fig. 11 on p. 23).

Fig. 13: Intervention of a sensitive function during the rewriting step

leading from string �

t�1

to string �

t

In GROGRA, some �xed sensitive functions are implemented; see Section 4.3 (p.

68) for details.

The combination of sensitivity with the 2-phase process leads to the most general

de�nition:

De�nition 11. Let �, (F , �), F

N

, F

S

, h

N

, h

S

be speci�ed as in Def. 10. A

sensitive 2-phase growth grammar (with respect to � and (F , �)) is a 9-tuplet

G = ((�; �); h

N

; h

S

; �; R

1

; R

2

; I;  

1

;  

2

);

such that ((�; �); �; R

1

; R

2

; I;  

1

;  

2

) ful�lls the formal requirements of a

non-sensitive 2-phase growth grammar (see Def. 9). Furthermore, it is required

that no function symbol from F

S

appears in the r.h.s. of an interpretative rule

(i.e., a rule from R

2

). Applicability and application of interpretative rules are

de�ned as in Def. 9 and are independent from the generated structure sequence.

Let

~

G

t�1;s

(m

s

) be the result of the application of the interpretative rules of

G to the module m

s

2M(�; �) in the (t� 1)-th step, and let the last module of
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the string

~

G

t�1;s

(m

s

) have position q in the string

�

0

t�1

=

~

G

t�1

(�

t�1

) =

~

G

t�1;1

(m

1

) � � �

~

G

t�1;n

(m

n

):

(Set q to the position of the nearest preceding module if

~

G

t�1;s

(m

s

) is empty.)

Then we de�ne the evaluation of an f 2 F

S

in the t-th step w.r.t. the module m

s

in the string �

t�1

in the same way as in Def. 10 for 1-phase sensitive grammars,

but we replace in that de�nition I(�

t�1

; s) by I(�

0

t�1

; q), and

~

I(�

t�1

) by

~

I(�

0

t�1

).

This section had the purpose to show that a precise mathematical de�nition

of the grammars forming the basis of GROGRA is possible, and to provide such

a de�nition. It had not the aim to prove general mathematical statements about

these grammars or about the structures they generate. This would be subject of

another work. (See, e.g., [62] or [63] for some related work.)

Furthermore, it is not the aim of this general treatise to discuss special,

botanically motivated concepts of plant behaviour, of stochastic growth processes

etc. The introduced growth grammars o�er a rather general framework for such

models. Analogously, in a textbook on the foundations of calculus, one will �nd

a lot about �-neighbourhoods, continuity, di�erentiability and related stu�, but

not necessarily the applications to physics, celestial mechanics or other sciences

which motivated the development of in�nitesimal calculus. | The examples in

Chapter 6 will give some hints how the formal framework of growth grammars

can be �lled with special modelling concepts more closely related to botany.

In the de�nitions given above, the possible use of the repetition operator on

the r.h.s. of a rule was excluded to avoid a too complex syntax speci�cation of

rules. See Section 4.5 (p. 73) for a detailed description of the repetition operator.
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Chapter 3

Quick guide for using GROGRA

3.1 Installation

There exist two versions of GROGRA 2.4, one running on an IBM-compatible

microcomputer, the other on a Silicon Graphics workstation (Iris Indigo). (A

third version for Sun and other workstations is currently being developed.) The

executable �le is grogra.exe for the micro version, grogra for the workstation ver-

sion. Both versions require additionally the �le lexpla.msg, containing some short

explanation texts on the growth grammar syntax.

Further requirements for the micro version are: EGA- or VGA-card (or

other graphics card supported by the Borland Graphics Interface, see [15]), mouse

(optional), printer at LPT1 (optional), MS-DOS 3.3 or higher, Borland Graphics

Interface �le (egavga.bgi or other driver software, depending on the graphics card).

The bgi �le is expected in the subdirectory ntcnbgi, the �le lexpla.msg in the

subdirectory where GROGRA is called. There is some amount of free space on

the disk required, because GROGRA creates some auxiliary �les during work.

Their size depends on the application for which GROGRA is used. The same

holds for the RAM requirements.

Grammar �les (having the �le name su�x .lsy or .ssy) and any other input

�les to be used by GROGRA are normally expected in the same subdirectory

where GROGRA is called.

If, e.g., GROGRA is to be installed from a 
oppy disk together with the

example �les koch.lsy, examp.lsy and dichomur.ssy on a PC with VGA card, the fol-

lowing �les should be created on the harddisk by copying them (the subdirectory

tcngg could be exchanged by another path):

ntcnbginegavga.bgi

ntcnggngrogra.exe

ntcnggnlexpla.msg

ntcnggnkoch.lsy

ntcnggnexamp.lsy

ntcnggndichomur.ssy

39
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(On the UNIX workstation, n has of course to be replaced by / , and the �le

egavga.bgi is not needed.)

To manipulate the input �les, additionally some text editor is necessary.

3.2 Usage

This section will explain the most important features of GROGRA 2.4 and how

they are invoked. A detailed description of all possible options will be given in

Chapter 4 and 5.

The �rst thing to do is normally to write a �le containing the grammar that

GROGRA is meant to interprete. This must be a simple ASCII text�le without

additional formatting (ensure that the option \text only" or something similar is

chosen when manipulating the �le with WORD or another editor). The �lename

must end with .lsy in the case of a grammar not using sensitive functions or

parameters, and .ssy in the case of a sensitive grammar.

Let us assume we have written with a text editor a �le named base.lsy consisting

of the following 6 lines:

nvar lg length,

nangle 50,

� # L50 a(1,100),

(t<m) a(t,m) # s [ @0.8 + L�0.5 a(1, min(t+1,m-t)) ]

[ @0.9 � L�0.6 a(1, min(t+1,m-t)) ] L�0.9 a(t+1,m),

s ## N(lg� 80) F

The �rst two of these lines contain directives | a variable declaration and the

initialization of the angle associated to the symbols + and � in the rules | ,

the other lines contain rules, where the symbol # stands for the arrow �!

separating l.h.s. and r.h.s. of the rule. Line 5 continues the r.h.s. of the rule

beginning in line 4. The last rule is an interpretative rule, indicated by the

double rule sign ##.

No probabilities are speci�ed in this grammar | they are all assumed to

be 1 |, but the second rule has a condition, t < m.

Note that the directives and the rules must be separated by commas, and that

all symbols must be separated by blanks. Especially, the blanks preceding and

following the signs [ and ] must not be omitted. | A complete description of the

growth grammar syntax will be given in Chapter 4.

To see what sequence of geometrical structures is generated by this gram-

mar, we will start GROGRA.

We type grogra at the DOS (or UNIX) prompt. When the software is installed

correctly, there will now appear a display with the heading
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� � � � � � �� G R O G R A � � � � � � ��

G R O W T H G R A M M A R S

and a small text, ending with the invitation

Start of program:

O.K.

The box containing \O.K." will become green if we move the mouse cursor inside

it. Thereby we can test whether the mouse is working. If not, GROGRA is also

capable to execute most tasks without the mouse. To start GROGRA, we can

either press the left mouse button when the cursor is inside the box or press any

key on the keyboard.

Now we arrive at the main menu of GROGRA, which is entitled \Please

make a choice". It contains 8 items which can be selected by moving the mouse

(thereby underlying the selected item with red colour) and pressing the left mouse

button, or by pressing the key with the letter indicated in the menu.

Normally, the �rst choice is the �rst item,

a Generation of a new branching structure.

When we choose this, there appears a submenu \Way of making the structure:",

listing several input possibilities, the most important of which being the third

and fourth one. As our �le base.lsy contains no sensitive functions or variables

(and has already the su�x .lsy), we choose the third:

non-sensitive growth grammar <N>,

either by using the mouse or by typing \n".

After that, there will appear a list of the available .lsy-�les in the current subdi-

rectory. If there are more than 15 such �les, we get a request \Press any key" to

see the next part of the list (possibly several times, if the list is very long). Our

�le \base.lsy" should appear in this list. Next, there is the request

Name of the L-system �le (without extension):

Here, we have to type base and to �nish the text input with the return-key.

If we have made a mistake, or if the �le is not there or erroneous, there will

appear the information

L-system �le not existing or not accessible.

Press <return> to continue.
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and we come back to the main menu.

However, if everything is alright, there appears the message

L-system successfully read

and we are asked for the start word . As in the other examples, this is the word

consisting of the single symbol � here (look for the � character on the keyboard).

We have to give in this start symbol and a <return>. Then we are asked

How many steps are to be executed?

Here, the number of developmental steps has to be speci�ed (corresponding to t

in Section 2.2). One has generally to be careful not to choose a number too high

because several example grammars imply some exponential growth behaviour,

leading to long calculation times and memory shortcuts if the number of steps is

too high. Let us assume we choose 9 steps here.

The next request is

Execution only of speci�ed developmental steps (give <s> and<return>)

or of all steps (any other input):

When we want to create all developmental steps from 1 to 9, we can simply press

the return key at this request.

This will start the structure generating process, consisting of (generative)

grammar application, interpretative application and geometrical interpretation.

The geometrical structures corresponding to the 9 developmental steps will be

created in the memory, as it will be indicated by \Structure is generated" after each

step. However, we see no graphical result in this moment, because the graphics

display mode is not activated.

The creation of the structures can take considerable time in the case of grammars

describing very complicated and large plants, or when a high number of steps is

chosen. It is �nished when the message

Prescribed number of steps is done.

Execution of this L-system �nished.

Press <return> to continue.

appears.

Afterwards, we will be back in the main menu, but the sequence of structures is

now present in the background and can be watched, listed, stored, transformed

or analyzed.
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To get a visual impression of our structures, we have to choose

e Show the actual structure graphically.

We arrive at a small submenu \Direction of view". Let us choose the �rst item,

\side view <A>". On the workstation, there is also the possibility to select

the display size (\standard format" / \full screen"). Next, we get some informa-

tions, entitled \Now there will be the graphical output". The numerical values

of the screen limitations are not important for us; the visual area is automati-

cally adapted to the maximal extensions in x- and y-direction appearing in the

generated structure sequence.

When we press the return key, we come into the graphical display mode. In

our case, with the structure generated from base.lsy still loaded, we will �rst see

an empty screen with a small number \1" in the upper left corner. This is the

structure derived from applying the �rst rule to the start symbol �| namely, the

empty structure, because the r.h.s. of this rule contained no F command which

would generate a visible unit.

With the <space> key, we can proceed to the second, third. . . developmen-

tal step, which correspond to non-empty structures now. The number of the step

is always indicated in the upper left corner. After step 9 | the structure with

the highest number created |, we come back to the main menu. We can also

interrupt the display sequence before by pressing <return>. Or, by pressing the

\c" key, we can tell GROGRA to proceed automatically through the sequence

of structures, showing each one for a �xed interval of one second and beginning

again with the �rst one when the last is shown. (We can stop this automatic

display by pressing the space key or, if we want to leave the graphics display

completely, the return key.)

The structures generated from base.lsy should look like those in Fig. 14.

When one structure is displayed in the graphical display mode, we can

decide to create a Postscript �le to print this structure on a remote printer, to

which the �le must be sent after we have left GROGRA. This is simply done

by typing \p". (GROGRA asks for the paper format and for the �le name

afterwards.) Or we can produce an online hardcopy from the screen on a directly

connected printer by typing \d" (currently only in the PC version possible).

There is also the possibility to create a HPGL �le for plotting by typing \h" (see

Section 5.3 for further informations).

In the graphical display mode, we can also decide to look more closely at

certain parts of a structure by \zooming" into that structure. This is done by

typing \z". After that, one has to click at two positions with the mouse | the

�rst one specifying the lower left corner of the new visible part, the second the

upper right corner. (This feature does only work with the mouse.) The zooming

can be iterated several times. To re-establish the original scaling, it su�ces to

press \e".
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Fig. 14: Sequence of structures generated from base.lsy
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Our growth grammar base.lsy does only work in two dimensions, so it doesn't

make much sense to look at its results from di�erent spatial positions. But for

other grammars, this possibility can be useful. We can choose in the submenu

\Direction of view" the third item, \arbitrary direction of view <C>". Then we are

asked for an angle in the xy plane (y-direction = 0), and afterwards for another

angle, specifying the slope of view relative to the horizontal direction. Both values

have to be given in degrees and �nished with <return>. Thereafter, the whole

developmental sequence will be seen in the changed perspective. (The projection

is always a parallel projection on a plane orthogonal to the direction of view. See

Section 5.3 for further details.)

However, not all informations contained in the created structures are visible

in the graphics display. There are attributes which can be determined by the

grammar (e.g. the N command in the last rule of base.lsy controls the \leaf

parameter" n for each elementary unit building up the structure). To look at

these attributes, and also to get known the exact values of the lengths, positions,

diameters etc. of all units, there is the possibility to \List the actual structure"

(item c in the main menu).

Having chosen this item, we are �rst asked for the output device, which can

be the screen, a connected printer, or a �le. Because the generated structures

can be rather large, it is useful to have �rst a look at the list on the screen before

writing to the printer or to a �le.

The next submenu is entitled \Output of which structures / shoots:", and one

can choose between \all <A>" and \beginning from a speci�ed structure / shoot

<S>". (Here and in the following, \shoot" is used synonymously to \elementary

unit" in the sense of Section 2.2.) Let us choose the second alternative. Then we

are asked for a number indicating the developmental step to start with. This can

be an integer between 1 and 9, in our case.

Let us, e.g., type \3" (�nished with return). Next, we have to specify a shoot

number, let us say, \1". After that, we obtain a screen page with a lot of numerical

informations, entitled \Structure number 3: Shoot number 1, emerging from shoot

number -2:". All informations on this page refer to the �rst unit (the basic stem

section) of the third structure in our developmental sequence. (Remind that the

�rst structure is empty, so Structure number 3 corresponds in fact to the second

time step where something can be seen.) All information about this unit which

is laid down in the memory is given on this screen page. We mention only the

length (50.000000 length units), which corresponds to the L50-command in the

�rst rule of base.lsy, the diameter, which is zero because no D-command appeared

in base.lsy, and the leaf parameter (n), which is put to the value 4000 by the last

rule of base.lsy (50 � 80 = 4000). This parameter could, e.g., stand for leaf surface

in mm

2

. By the way, the irritating information \emerging from shoot number -2"

will only tell us that the basic shoot has no mother shoot at all. Further details

about the informations on this screen page can be found in Section 5.1, p. 79.

To control the next elementary unit of structure number 3 in the same way,
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one has only to press <return>. This shoot has number 2 and emerges from

number 1. It establishes a side branch with length 25 and was created from

a(1; min(t+1; m� t)) in the second rule of base.lsy. The length is 50=2 because

this module was preceded by the turtle command L � 0:5.

The structure has two further elementary units which can be shown by pressing

<return> twice. Then, when we press <return> once more, we arrive at structure

number 4, which begins again with a basic shoot of length 50. At each shoot, we

can leave the list display by simply typing \q <return>", which brings us back

to the main menu.

When we choose to list \all" structures, the list will begin with structure number

1, which is empty in our case.

GROGRA has several analysis options which can provide further informa-

tions about the actual structure. Let us choose the item

f Analyze the actual structure

in the main menu. There appears a submenu \Options of analysis:" with again 8

items. A detailed discussion will be found in Section 5.2 (p. 98). We start only

the \elementary analysis" here (�rst item). Again, the output medium is to be

speci�ed | let us choose the screen.

There appears a text screen entitled \Basic Data" where we �nd informations

about Structure number 1. All numerical values (with the exception of the last

one) will be zero here, because our structure number 1 is empty. By pressing

<return>, we get the corresponding informations for the next structure, and so

on. From structure 2 on, also the increments in relation to the preceding structure

are given. Thus we can e.g. see that our \tree" has reached a height (maximal z

coordinate) of 284.766418 length units in step 9, and that this is an increment of

23.914856 length units compared to step 8. Also, the n-parameters (leaf surfaces)

and the shoot volumes are summed up | the latter sum being always zero here,

because we have excluded diameter growth from our grammar. (See Chapter 6

for other examples, including such with real thicknesses.)

Once a sequence of structures is created, there arises possibly the wish to

store it in a �le instead of creating it again from the .lsy-�le when it is needed

once more. This can be done under the main menu item

d Store or transform the actual structure.

There are several data formats (see Section 5.5) which can be selected in the

appearing submenu. The standard format is invoked by the �rst menu item,

\Save in standard format (.dta) <A>". This option takes care for saving the

whole developmental sequence (steps 1 to 9 in our case). Instead, we can also

decide to save only one developmental step, e.g. the most complicated, number

9. Then we would have to choose the second menu item, \Save in .dta format,
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only one developmental step <E>", and afterwards to specify the number of the

structure to be saved, here 9.

In either case, we have afterwards to give in a �lename, which can be arbitrary

(but not longer than 8 characters under DOS) and which is automatically ex-

tended by the su�x \.dta".

Attention: If a �le with the speci�ed name does already exist, it is overwritten

without warning!

When GROGRA has �nished saving, we are informed by the message \Saving

�nished, press <return> to continue." Then we are in the main menu again, and

the structure just saved is still present in the memory. It will be deleted only

when we create a new structure (item a), when we read another structure from a

�le (item b), when we change the internal mode of memory (see below), or when

we leave GROGRA (item q: Quit the program).

The complementary process to saving is reading. If we have saved the last

developmental step, using option <E> above, in a �le named base9.dta, we want

perhaps to read from this �le. To this purpose, we have to choose the main menu

item

b read a structure from a �le.

Again, we �nd ourselves confronted with a submenu specifying several data for-

mats. Here, we must choose the �rst item, \Standard format (format .dta) <A>".

(Another format is, e.g., the descriptive format .dtd (fourth item), which is used

to read data from morphological measurements to analyze and compare them

with arti�cially produced structures. dtd-�les can not be created by GROGRA,

they must be written \by hand" and can only be read and interpreted.) Having

chosen <A>, we get a list of available .dta-�les, like in the case of the .lsy-�les

above. Then we have to type in our \base9".

In the case of large structures, the reading process can cost considerable time.

(In fact, there are sometimes situations when it is more economical to create a

structure once more from the lsy- or ssy-�le instead of reading it from a dta-�le.)

The completion of reading is signalled by the message

\reading process �nished.

Press <return> to continue."

When we now invoke the graphical display, we will see our former structure

number 9 now as the single number 1 | as was to be expected, because we

didn't save the other developmental steps. We can work with this structure in

the same way as with a structure generated directly from a grammar �le.

The .dta-�les can also be read by a text editor (they are simple ASCII �les). They

contain essentially the same information that is listed in the list-option explained

above, but in a more comprimed manner.
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When we try to generate on the microcomputer a very large structure, let us say,

base.lsy with 15 steps, there can possibly occur the error message

Not enough space for new segment. Structure cannot be �nished. Press

<return> to continue.

during the grammar evaluation and structure creation. The structure will then

be created up to the point where the memory de�ciency occurred. (In the display,

this will probably cause \holes" and missing parts.)

To avoid this error, there is a possibility to change the internal mode how

structures are stored. Normally, this is done in \RAM mode", i.e. the structures

exist as chained lists of data records in the main memory of the computer. But

there is also a \HD mode" where structures are hold as sequential lists in a �le

on the hard disk. This method provides much more space for large structures.

However, it has the disadvantages that the computation time is longer and that

not all GROGRA features work in this mode (see Section 5.4, p. 108, for details.)

E.g., it is not possible to use sensitive grammars in HD mode.

To change to HD mode, we have to choose the main menu item

w Service functions and explanations.

(Eventually, we have to save our structure �rst in a dta-�le, because it will be

deleted when we change the mode of memory.) The submenu \Explanations and

Service" contains 7 items. The 6th of them, \Change the internal mode of memory

<S>", acts like a switch: When we are in RAM mode, we come into HD mode,

and vice versa. We are requested to con�rm this change with an \O.K." like in

the start display of GROGRA.When we are in HD mode, we can again invoke the

\Generation of a new branching structure", and there will be no apparent di�erence

to the default RAMmode, except perhaps a certain slowness and the loss of some

features in the menues.

The \Service functions and explanations"-menu can also provide us with some

short informations about turtle commands, expression syntax and grammars (�rst

three menu items) if, for example, this manual is not at hand. There is also the

possibility to switch between an English and a German version of the program

(menu item \Change the language <A>"). The default is English.



Chapter 4

Growth grammar syntax and

semantics

This chapter contains all informations necessary to write an .lsy- (non-sensitive

growth grammar-) or an .ssy- (sensitive growth grammar-) �le. Although most

semantical features were principally already de�ned in Chapter 2, the complete

syntax and semantics will be given here independently of the mathematical for-

malism of Chapter 2.
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Fig. 15: Three levels of formal description
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The speci�cation of structural development can be conceived as being strati�ed

in three levels of formal description, each with its own ideas, mathematical back-

ground and symbolization (see Fig. 15):

(1.) The speci�cation of a geometrical structure (possibly with additional, non-

geometric attributes) at a �xed moment in time. This is achieved in the

GROGRA system by turtle geometry.

(2.) The speci�cation how these structures develop in time. This is done by

deterministic rule systems (L systems).

(3.) The control which of several applicable rules is actually applied at a given

instance. This control is carried out in the framework of growth grammars

with the help of features like stochastic rules, random variables, parame-

trization, conditions and sensitivity.

In our explanation of growth grammars as a formal tool for the speci�cation of

structural development, we will roughly follow this classi�cation.

4.1 Turtle commands

When we neglect the dynamical aspect, the objects which GROGRA creates

are simply branching structures in 3-dimensional space which are built up of

cylindrical units (possibly of diameter 0), each of which can bear additional, non-

geometric attributes (Fig. 16). We speak of (attributed) geometrical structures.

The cylinders (rectangles in Fig. 16) are called elementary units or shoots. Each

unit has at most one mother unit from which it emerges.

Turtle geometry [1] is a formal tool to describe such structures. It could

be extended to include further geometrical possibilities like surface constructions

([98], [79]) or simply other �xed geometrical objects additional to cylinders, but

these possibilities are actually not implemented in GROGRA 2.4.

Turtle geometry is based on the conception that there is a device, called

the turtle, which can be told by commands to move, to change its orientation in

space, and to construct elementary units with given attributes while moving.
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Fig. 16: An attributed geometrical structure

The state of the turtle is a data record containing all relevant information on

its position, orientation, attributes to be used in the next construction step, etc.

More precisely, the state variables of the turtle are:

P = (p

x

; p

y

; p

z

), a vector specifying the position of the turtle,

H = (h

x

; h

y

; h

z

) (= head), a vector of unit length specifying the direction of the

turtle's next move,

L = (l

x

; l

y

; l

z

) (= left), a vector of unit length, orthogonal to H, specifying a

direction in three-dimensional space to be considered as \left" with respect

to the turtle,

U = (u

x

; u

y

; u

z

) (= up), a vector of unit length, orthogonal to H and L, speci-

fying a direction in three-dimensional space to be considered as \upwards"

with respect to the turtle,

`, a real number specifying the length of the next move and at the same time the

length of the next elementary unit to be constructed,
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d, a non-negative real number specifying the diameter of the next elementary

unit to be constructed,

v, a real number specifying a vertical tendency which is to be obeyed when a

special command (the RV command, see below) is given,

n, a real number specifying some non-geometrical parameter of the next elemen-

tary unit to be constructed, currently used for needle surface,

p, an integer specifying the colour of the next elementary unit (in the current

GROGRA version, the colour is encoded according to the EGA colour table

with 16 colours, see Appendix 1),

q, a real number between 0 and 1 specifying the relative position along the mother

unit where the next elementary unit will emerge,

m, a reference to the mother unit of the next elementary unit which will be

constructed,

b, an integer, giving the branching order of the next unit which will be con-

structed,

g, an integer, called the generative distance, indicating the number of units be-

tween the next unit and some mother-less \root unit",

r, an integer, called the relevance counter , which prevents the creation of new

units when it is smaller or equal to zero.

Furthermore, there are some \shadow variables", called the local state variables,

namely, `

L

, d

L

, v

L

, n

L

and p

L

. In fact, it is this local variable set which is

used when a new elementary unit is constructed. These variables are normally

identical to their counterparts `, d, v, n, p. The only way to change their val-

ues independently is to use the so-called local commands (bearing the specifyer

`) explained below. After each usage, the local variables are re-identi�ed with

their ordinary counterparts, such that their intentional alteration has only con-

sequences which are restricted to the next constructed elementary unit (or to the

next RV -command, in the case of v

L

). Therefore the name \local state variables".

Some of the state variables can be changed by speci�c commands, others are

changed automatically during the action of the turtle.

Before discussing the possible commands, let us specify the default values

of the state variables which are assumed before any command is given (and which

can be re-installed by some commands):

P = (0; 0; 0),

H = (0; 0; 1), L = (�1; 0; 0), U = (0; �1; 0),

` = `

g

, d = d

g

, v = v

g

, n = n

g

, p = p

g

,

`

L

= `

g

, d

L

= d

g

, v

L

= v

g

, n

L

= n

g

, p

L

= p

g

,

q = 0,

m = NULL (no mother unit),
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b = 0,

g = 1,

r = 1.

The \global" default variables `

g

, d

g

, v

g

, n

g

, p

g

can | together with a further

variable, w

g

, specifying an angle in degrees | be de�ned in the directive part of

a grammar �le (i.e., preceding the rules) by the nset statement :

nset L x,

nset D x,

nset V x,

nset N x,

nset P i,

nset W x,

Here, x stands for a real number to be speci�ed in decimal notation, and i for

an integer. (Note that the upper-case letter must be preceded and followed by

exactly one blank, and that the statement must be �nished by a comma. Upper

and lower case letters have generally to be distinguished, like in the programming

language C.) After nset L x, the variable `

g

has the value x, and analogously for

the other variables. Synonymous to nset L x, is the statement nlength x, or nlaenge

x, and synonymous to nset W x, is nangle x, or nwinkel x,. An alternative form

of assignment is provided by the nask statement , which enforces a request to the

user at runtime:

nask L question text,

(and, analogously, with D, V, N, P or W). Here, the question text is an arbitrary

text which may contain blanks, but which must not contain any comma.

If no nset or nask statement provides a value, the global variables (and with them,

also the turtle's state variables) have the following default values:

`

g

= 100,

d

g

= 0,

v

g

= 0,

n

g

= 0,

p

g

= 14 (= yellow),

w

g

= 90.

Let us now consider the turtle commands which change the value of one (or

more) state variable(s) while the turtle is at work. An overview is given in Table

1. For x, one has to substitute some 
oating point number. The parentheses (

) enclosing the argument can in all cases be omitted. (This is no longer true if

formal expressions are substituted for x in the context of parametric rules, see

Section 4.3 below.)
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Table 1: Standard turtle commands

Command in
uenced

without with one argument x variables

arg. with sustained e�ect with local e�ect

L L(x) L+(x) L�(x) Ll(x) Ll+(x) Ll�(x) `

Group D D(x) D+(x) D�(x) Dl(x) Dl+(x) Dl�(x) d

1 V V(x) V+(x) V�(x) Vl(x) Vl+(x) Vl�(x) v

N N(x) N+(x) N�(x) Nl(x) Nl+(x) Nl�(x) n

P P(x) Pl(x) p

Group F F(x) F+(x) F�(x) P , q, m, g

2 f f(x) f+(x) f�(x) P , q

@(x) P , q

RH(x) L, U

RL(x) H, U

RU(x) H, L

Group RV RV(x) RV+(x) RV�(x) H, U

3 RG H, L, U

+ H, L

� H, L

$ L, U

Group [ b, r

4 ] all

% r

Some of the commands (especially F , f , +, �, $ , [, ], % ) were taken from [98],

but the command language is extended and more systematically organized here.

Turtle commands of group 1: Assignments

The syntax and meanings of the group 1 commands L, D, V , N , P are rather

systematic. All these commands are possible without argument (they set their

corresponding state variable back to the default value in this case) or with one


oating point number x as argument. The upper case leading symbol indicates

the state variable which is changed. The symbols constituting a command, like L,

l, +, (, must follow each other without blanks between them. The correct usage

of upper- and lower case letters is to be ascertained. Table 2 summarizes the

e�ects of the L-commands on the state variables ` and `

L

; the other commands

of this group act in an analogous manner.
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Table 2: E�ects of L-commands

command new value of ` new value of `

L

L `

g

`

g

L(x) x x

L+(x) ` + x ` + x

L�(x) ` � x ` � x

Ll(x) ` x

Ll+(x) ` ` + x

Ll�(x) ` ` � x

Turtle commands of group 2: Movement and unit construction

These are the most important commands, because they cause the turtle to move

and to create new cylindrical units. The letter \f" stands for \forward". The f

command does only move the turtle (i.e. the position P is changed), while the F

command makes the turtle additionally construct an elementary unit along the

straight line where it moves, thereby using the state variables `

L

, d

L

, n

L

, p

L

to

�x the extensions and attributes of the new unit. The new position P

0

is at the

midpoint of the upper circle of the newly created cylinder after an F command,

while the old position P marks the midpoint of its basal circle (Fig. 17). The

direction of movement is in both cases, for f and F , the current head direction

(H) of the turtle.

Fig. 17: Result of an F command
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The several variants of the F command di�er only in the length � (of the con-

structed unit and of the movement) which is used. This length � is

`

L

for F ,

x for F (x),

`

L

+ x for F+(x),

`

L

� x for F � (x).

The variants of the f command work analogously, but without unit construction.

The command @(x) performs the same movement as f � (x� 1), or, equiv-

alently, f((x� 1) � `). Here, the argument x will normally be a number between

0 and 1. Thus, if the command @(x) comes directly after an F command, it will

cause the turtle �rst to move back along the just created unit (f(�`)) and then

again to move forward for a speci�ed part x of the length ` of the unit (Fig. 18).

Fig. 18: Turtle movement after the @(x)-command

Besides changing the turtle position, the commands F , f and @ have also

some in
uence on other state variables: If the used length is �, the state variable

q, which is meant to specify the relative position on the mother unit where a side

branch emerges (but measured inversely to Fig. 18, i.e. identifying a shoot tip

with 0 and the basis with 1), is set to

0 by the F command,

q � �=` by the f command,

1 � x by the @(x) command.

The mother unit m is actualized by the F command to be the newly created unit,

and the generative distance counter g is incremented by 1.
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Turtle commands of group 3: Rotation

With the exception of the abbreviated commands +, �, $ , all rotation commands

begin with an upper case R. The argument | if there is one required | is a


oating-point number which is interpreted (except for the RV command) as an

angle in degrees. Negative values and values exceeding 360 are allowed.

The commandsRH(x), RL(x) and RU(x) induce the turtle to rotate around

theH-, L-, or U -axis, respectively, by x degrees. The position remains unchanged.

After the command RH(x), the direction vectors L and U have rotated by x

degrees, while the H vector remains unchanged (Fig. 19). The situation after

the RL(x)- and RU(x)-command is analogous. The relative situation of the

vectors H, L and U to each other | forming an orthonormal system | remains

unchanged during each rotation operation.

Fig. 19: E�ect of the command RH(x)

Note that the moving direction of the turtle remains unchanged after a RH(x)-

command, but is changed after RL(x) and RU(x).

The command + is equivalent to RU(w

g

), where w

g

is the global variable men-

tioned above in the context of the nset-statement. Similarly,� stands forRU(�w

g

).

The symbols + and � must | like all other turtle commands | be separated

from the preceding and succeeding symbols by blanks to be interpreted correctly.

The $ command stands for RH('), where ' is the rotation angle to be used

for the U vector to minimize the angle between U and the vertical direction (i.e.,

the z axis of the global coordinate system). This is a \correction" of orientation

which is often necessary after a sequence of rotations around di�erent axes to

ensure that the U -vector points as far as possible \upwards".

RG is a command without argument that enforces an orientation strictly

\downwards" (geotropic). After RG, the H vector is (0; 0; �1). (See Section



58 SYNTAX AND SEMANTICS

2.2 for the exact e�ect on the vectors L and U , which is normally not of interest

after this command.)

The RV command makes use of a value s which is determined as

v

L

by RV without argument,

x by RV (x),

v

L

+ x by RV +(x),

v

L

� x by RV � (x).

This s quanti�es a \vertical tendency" (downwards), or a \geotropism strength",

in the following sense: RV adds the vector (0; 0; �s) to H and enforces the new

H to be the (normalized) sum by performing a rotation around the L axis (Fig.

20). The greater the value s, the greater is the \deviation" from the original H

direction and the inclination of the new H direction downwards. Note that also

negative values of s are possible, leading to an upward tendency.

Fig. 20: Orientation change by the RV command

A sequence of alternating commands F and RV leads to a \bending down" of

the generated branch. | The RV command is inactive if H is pointing directly

upwards or downwards.

Turtle commands of group 4: Control of branching behaviour

By enclosing a sequence of commands in brackets [, ], the turtle is induced to

construct a side branch. This is done by storing the actual state of the turtle

in a pushdown memory or stack once an open bracket \[" is read. When the

corresponding closed bracket \]" is reached, the turtle stops the construction of

the branch, forgets its current state and adopts the old state that was actual

when the \[" was entered, removing the state from the stack and jumping to the

old position. Thus, the commands after \]" will induce the turtle to continue

the construction of the \main branch" (see Fig. 21 (a)). Another interpretation

| which leads to the same result | says that the turtle \divides" itself at each



4.1. TURTLE COMMANDS 59

open bracket and constructs the side branch (corresponding to the string inside

the brackets) and the main branch (string after the closed bracket) in parallel (Fig.

21 (b)). This interpretation is certainly closer to the reality of plant growth, where

meristems can divide itself and work in parallel, but due to the lack of properly

parallel machines, the current implementation of GROGRA works according to

the �rst, sequential interpretation.

Brackets can be nested arbitrarily often, but the usual syntax requirements

for parentheses systems must be ful�lled, i.e. each open bracket must be balanced

by a closed bracket on the correct level. Be careful that each \[" and each \]" is

surrounded by blanks.

Fig. 21: Sequential (a) and parallel (b) interpretation

of the turtle command sequence F [ RU-45 F ] F.

When the symbol \[" is passed, the branching order b is normally incremented

by 1. The program takes care that in a construction like . . . [ [ . . . ] ] . . . , where

no F commands occur between the [ [ pair, the order is also incremented only by

1, not by 2.

The symbol % works as a cut operator. It stops the construction of a

branch before the appropriate closed bracket \]" is reached. This is often useful

in developmental sequences when branch shedding is to be modelled. When we

consider, as in this subsection, only momentary structures, the % command is

super
uous.

Technically, the e�ect of the cut operator is performed by manipulation of
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the relevance counter r, which is part of the state (but which is not put on the

stack when a bracket is reached). Each command is only performed when r is

greater than 0. r is put to 0 by % , an r smaller or equal to 0 is decremented by

[ and incremented by ].

Additional turtle commands: Register manipulation, method calls

Independently from the turtle state, there are (in the current version of GRO-

GRA) 10 global \register variables" r

0

, r

1

, . . . , r

9

. They can carry additional

information of a global character which is required during the execution of a

growth grammar. Their current values can be obtained by declared register vari-

ables, see Section 4.3, p. 66. For the assignment and manipulation of their values,

6 turtle commands are available (let n be a decimal digit specifying the register

number and x an arbitrary 
oating point number):

In = (x) assigns x to r

n

,

In+ = (x) increments r

n

by x,

In� = (x) multiplicates r

n

by x.

The three commands

Jn = (x)

Jn+ = (x)

Jn� = (x)

do essentially the same like the corresponding I commands, but at another mo-

ment in the generation-interpretation-cycle of GROGRA (see Section 4.2, p. 61).

The I commands are executed | like all other turtle commands | during (geo-

metrical) interpretation, the J commands during generative rule application.

The register handling is not very elegantly solved and will certainly be re-

organized in later versions of GROGRA. However, the reference to global registers

is often indispensable for realistic simulations (see the examples section), and the

above declared commands are nothing but a �rst attempt to meet this need in

the framework of turtle geometry and grammars.

Another feature which has even more ad hoc character but which is also

necessary in some cases aremethod calls. Currently, there are three procedures

(methods) implemented in GROGRA which perform certain calculations and

manipulations on attributed geometrical structures which cannot be done by

elementary turtle geometry commands (see Section 4.6, p. 74, for details). The

execution of one of these methods is enforced when the turtle arrives at the

command

Mn

where n in an integer (currently restricted to 1, 2 or 3) specifying the desired

method.
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Appendix 2 gives again a list of all 61 di�erent turtle commands and their e�ects.

The execution of turtle commands to create a single attributed geometrical struc-

ture can be done directly by GROGRA when in the submenu evoked by \Gen-

eration of a new branching structure" the item \Turtle geometry without grammar

<T>" is chosen. The turtle commands are then to be typed in by hand. How-

ever, this is a test modus working only for small strings because of the restriction

to at most 127 characters of input. The created structure can be watched and

analyzed as described in Section 3.2 for structures generated from grammars.

4.2 Generative rules and interpretative rules

Now we come to the second level of description, the description of how the at-

tributed geometrical structures develop in time. This is done by systems of rules

(L systems) which are to be applied to the strings describing the structures in

turtle language. We refer to Section 2.1 for the general outline how the two rule

classes, generative rules (rules of the �rst phase) and interpretative rules (rules of

the second phase) work together. We call the generation of a new string by gener-

ative rules, the subsequent application of interpretative rules and the geometrical

interpretation by the turtle the generation-interpretation cycle of GROGRA (Fig.

22).

Fig. 22: The generation { interpretation cycle

All turtle commands are executed in the step \interpretation by turtle", with the



62 SYNTAX AND SEMANTICS

exception of the J -commands, which are executed during the \generative rule

application". Note that the execution of J -commands is always delayed by 1

timestep, because the J -commands appearing in �

k

can only be interpreted in

the next cycle.

For the sake of rule application, we allow the strings to contain additional sym-

bols (possibly carrying parameters) besides the turtle command symbols. These

symbols may consist of one or several letters, digits or special characters, possi-

bly followed by a parameter list (the single real-valued parameters separated by

commas) enclosed in parentheses. They are not allowed to begin with one of the

characters D, F, f, I, J, L, M, N, P, R, V, @, +, �, $, [, ], % which are reserved

for turtle command symbols. Furthermore, no comma or blank is allowed as part

of a symbol. The most secure way to avoid con
icts with these restrictions is to

use exclusively lower case letters and additionally to avoid the f . The length of

symbols must not exceed 10 characters. Some examples for legal symbols are:

a(42, 17, -0.5)

root(1000, 0)

z14~(1E�6)

b

leaf 0

When combined to form strings, these symbols must be separated from each other

by blanks. By the turtle, the additional symbols are treated like blanks, i.e. no

action is performed.

A generative rule has in general the form

(condition) l.h.s. # r.h.s. ?(probability),

The parts (condition) and ?(probability) may be omitted. The rule ends with a

comma. (This is not required for the last rule in a �le.) The constituting parts,

(condition), l.h.s., #, r.h.s. and ?(probability), must be separated by blanks from

each other. An interpretative rule di�ers in its syntax only by the usage of

the \double double-cross" ## instead of #. For interpretative rules, sensitivity

is excluded (see Section 4.7).

The condition, when one occurs, must be a conditional expression, see Sec-

tion 4.4 (p. 72). The l.h.s. is always a single symbol, possibly equipped with

formal parameters, see Section 4.3 (p. 68). No actual real-valued parameters are

allowed on the left-hand side of a rule. Hence, of the above-mentioned example

symbols, only \b" and \leaf 0" would be allowed as l.h.s. We will see in Section

4.4 how these restriction can be overcome by the usage of conditions. | Turtle

commands, however, are allowed to form the l.h.s., as far as they have no actual

parameters. Thus, it is e.g. permitted to formulate a rule
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F # % ?0.5,

which \kills" each created unit in the next timestep with a probability of

1

2

.

(However, the usage of turtle commands like [ or ] on the l.h.s. is not recommended

because it may lead to syntactically incorrect strings as results.) The length of a

l.h.s. must not exceed 70 characters.

The r.h.s. of a rule consists of an arbitrary (possibly empty) string, made

up of symbols (turtle command symbols and additional symbols mixed together)

which are now allowed to bear actual parameters (and also arithmetical expres-

sions instead of parameters, see Section 4.3). A possible rule would be

b # a(42, 1, 0) [ RU45 L�0.5 F b ] c(0),

where no condition is given and the probability is automatically assumed to be

1. An example for a rule with an empty r.h.s. is

c(t) # ,

The total length of a r.h.s. is bounded to at most 600 characters (including

all blanks and parentheses), and the length of its constituents (symbols with

parameter lists) to 70 characters.

The application of a system of rules on a string (which is the start string in

the beginning) is principally performed in parallel to each symbol of the string,

replacing the symbol by the appropriate r.h.s., if there is a rule with this symbol as

its l.h.s. (GROGRA, however, performs this task sequentially, passing the string

from left to right.) If no applicable rule exists, the symbol remains unchanged. If

several rules apply, and if no conditions and probabilities are involved, the order

in which the rules are written down in the grammar �le dictates which rule is

applied: It is the �rst one.

The probability must be speci�ed immediately following the ? sign. It

can be given by an arithmetical expression (Section 4.4) which is to be enclosed

in parentheses, or directly by a 
oating-point value between 0 and 1, for which

the parentheses can then be omitted. When for all rules with the same l.h.s. the

sum of the probabilities is 1, the choice between these rules is done randomly

with the given probabilities. If the sum is smaller than 1, let us say: s, then the

symbol will remain unchanged with probability 1� s.

If a rule is too long to �t in a single line of the grammar �le, it may be

split up by carriage-return-signs between its symbols, like the second rule in the

example system base.lsy in Section 3.2.
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4.3 Parametrization and variables

GROGRA 2.4 allows three fundamental types of numerical variables:

� constants, which just stand for single numerical values and which have to

be de�ned in the directive part of a grammar �le,

� declared variables, which have to be declared in the directive part (e.g., as

random variables),

� bounded variables, also called formal parameters, which appear on the l.h.s.

of some rule and which are replaced by numerical values from the actual

string before the rule is applied.

All variable names (identi�ers) are restricted in their length to at most 10 charac-

ters and can consist of arbitrary letters and other characters, excluding commas,

blanks, parentheses and operator symbols like +, �, �, =, .̂ They should not end

with an underline character ( ), and should not be identical to one of the strings

atan, atg, exp, log, max, min, sqrt. Upper and lower case letters are distinguished.

Because GROGRA can distinguish variable identi�ers by their syntactical posi-

tion in the rules from symbol names, it is allowed that some of them coincide

with symbol names. Thus, a rule like

t(t) # t(t+1),

would be possible, where the \t" outside the parentheses is a symbol (e.g. stand-

ing for some terminal meristem) and the \t" inside the parentheses is a formal

parameter, e.g. standing for time.

All variables may appear in arithmetical expressions (the \t+1" in the above rule

being a simple example), see Section 4.4 for details.

The evaluation of a variable, i.e. its replacement by a numerical value, takes place

when GROGRA evaluates the expression where it appears during the application

of a generative or interpretative rule.

Constants

A constant de�nition has the form

nconst name value,

where value is a 
oating-point decimal number in one of the usual notations

allowed in the programming language C. Like all other directives beginning with

a backslash character (n), a constant de�nition must precede all rules in the

grammar �le and must be �nished by a comma.

The e�ect is that every appearance of name in a position in the rules where a

numerical value is permitted is replaced by value. Note that constant names are

not allowed to appear as part of the l.h.s. of a rule.
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Declared variables

Variable declarations are part of the directive part, i.e. the �rst part of a growth

grammar �le, and can be mixed with constant de�nitions as well as with nset-

and nask-statements. Their general syntax is

nvar name specification parameterlist,

where each part is separated from the next by a single blank. The name is

the name of the variable to be declared, for the restrictions see above. The

speci�cation must be one of several possible keywords listed below. It speci�es

from where the variable gets its value when it appears in a rule which is to

be applied. The parameterlist consists of one or several (but not more than

20) numerical values, separated by blanks. How much values are required and

what their meaning is depends on the speci�cation. For some speci�cations, the

parameterlist is empty; the syntax is then simply

nvar name specification,

Be careful not to forget the �nishing comma. | The number of constants and

declared variables together must not exceed 60.

Let us now discuss the possible speci�cations.

uniform The variable is declared as a uniformly distributed random variable.

Its value is taken from a pseudorandomnumber generator each time it is

evaluated. (If an already chosen value has to be used once more, the memory

operator (underline) has to be attached to the variable name| see Section

4.4, p. 71.) The parameter list must contain two values, the lower bound

and the upper bound . E.g., the declaration

nvar x1 uniform -1.5 1.5,

speci�es x1 as a uniformly distributed random variable between -1.5 and

1.5.

normal Declaration as a random variable with a normal distribution. There

must be two parameters in the list, specifying the mean value and the

variance.

distribution A variable declared with this speci�cation assumes only non-

negative integers as values. The choice of the integer is performed randomly,

the values in the parameter list (up to 20 are allowed here) giving explicitely

the probabilities for the numbers 0, 1, 2, . . . . E.g., the declaration

nvar n distribution 0.1 0.7 0.2,

speci�es n as a random variable with value 0 with probability 0.1, value 1

with probability 0.7, value 2 with probability 0.2.

user request The value of a variable of this type is asked from the user at

runtime at each occasion when the variable is to be evaluated. There is no

parameter list.
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table The value is taken explicitely from the parameter list: The (n + 1)-th

value from the list is taken in the n-th generation - interpretation - cycle

(the cycle counting beginning with n = 0). If more cycles than values in

the list are executed, the last value from the list is repeated. E.g., the

declaration

nvar a table 5 6.5 7,

leads to a = 5 in cycle 0 (i.e., when the start word is transformed and the

resulting string interpreted), a = 6:5 in cycle 1 and a = 7 in all further

cycles.

array This speci�cation requires that an extra �le is prepared which must

contain all values which the declared variable can possibly assume. The

main part of the �lename must be the same as for the corresponding .lsy- or

.ssy-�le, but the su�x must be .add, where dd is a two-digit integer between

00 and 99, referred to as the �le number.

The parameter list has the form

n a b

1

b

2

. . . b

a

with n representing the �le number, a the arity of the array (an integer

between 0 and 5), and b

j

the upper bound for the j-th argument . Each

time the variable appears in the context of a rule, it must be followed by a

non-negative arguments, which are rounded to the nearest integer and used

as indices for an entry in an a-dimensional number array given by the �le.

This entry, then, is taken as the value of the variable.

The �le must contain b

1

� b

2

� : : : � b

a


oating-point numbers as entries in

lexicographic order, starting with the entry corresponding to the index com-

bination (0, 0, . . . , 0) and ending with the entry corresponding to (b

1

� 1,

b

2

� 1, . . . , b

a

� 1).

E.g., nvar p array 4 2 3 2, in a �le test.lsy speci�es p to be described by

the �le test.a04 as a two-dimensional matrix with 3 � 2 = 6 entries. The

values in the �le are p(0; 0) p(0; 1) p(1; 0) p(1; 1) p(2; 0) p(2; 1)

(in this order, separated by blanks or carriage returns), and p can only

assume these 6 values. If, e.g., the expression p(1:7; 0) is found in a string

to be transformed, the value found for p(2; 0) in the �le is substituted for

that expression. | If one of the upper bounds is violated (e.g., if p(0; 2)

appears), there will be an error message.

generation The variable takes as its value the number of the generation -

interpretation - cycle which is just performed, the counting starting with 0.

There is no parameter list.

register The declared variable is associated with the content of one of the

global registers r

0

, . . . , r

9

. The parameter list contains only one value,

namely, the number of the register (which is restricted to 0, . . . , 9 at the

time). Each time the variable is to be evaluated, the value is taken from

the corresponding register.
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index This speci�cation de�nes the variable as an index variable for the rep-

etition operator &, assuming the values 0, 1, 2, . . . and incrementing itself

with every new repetition. See Section 4.5, p. 73.

length The variable gets the value of the current steplength (`) of the turtle.

Because the turtle is not active in the generative step, this makes only sense

in interpretative rules; cf. the example base.lsy in Section 3.2. | There is

no parameter list in this case.

diameter The variable gets the value of the current turtle diameter d. Analo-

gous to length.

n value The turtle parameter n is taken. Analogous to length.

v value The turtle parameter v is taken. Analogous to length.

color The turtle parameter p is taken. Analogous to length.

q value The variable gets the value of the turtle state variable q, which stands

for the relative position of a unit at the axis of the mother unit (base = 1,

tip = 0). The same restrictions as for length hold.

xcoordinate This speci�cation is allowed only in sensitive grammars (.ssy-�les).

It induces GROGRA to take as value of the variable the x-coordinate of the

corresponding elementary unit tip in the just created structure (see Section

4.7 for details). There is no parameter list.

ycoordinate Analogous to xcoordinate.

zcoordinate Analogous to xcoordinate.

function A variable of this type refers to a special function which must be

compiled as part of the GROGRA software before. The currently available

functions are listed in Table 3 below. Some of these functions are allowed

only in sensitive grammars (.ssy-�les). The parameter list is n a, where n

is the number of the function and a its arity (number of arguments, must

lie between 0 and 5). Only numerical arguments are counted here, not a

possible dependence from the generated structure (sensitivity). The arity

may be 0. | When a variable declared as function appears in an expression

to be evaluated, it must be followed (like an array variable) by a list of a

parameters.
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Table 3: List of currently implemented functions

Number of Sensitivity Return value

function required Arity (see below)

1 x 1 f

1

(m)

2 x 1 f

2

(m)

3 x 0 f

3

10 1 f

10

(x)

11 5 f

11

(n; k; b; c; d)

The return values are:

f

1

(m) = maximal opening angle for a sector emerging from the tip of the cur-

rent unit upwards which contains no other units longer than m. (2-dimensional

version.) See also Example 6.10, p. 157.

f

2

(m) = minimal distance from the tip of the current unit to base and tip of other

units except the mother unit of the current unit and except all units shorter than

m. See also Section 4.7.

f

3

= sum of all values of attribute n of the system of units emerging from the

current unit (including this unit itself).

f

10

(x) = greatest integer smaller or equal to

x

2

+ 2:3� exp(0:022 x+ 0:06):

f

11

(n; k; b; c; d) =

8

>

<

>

:

0 if d = 0 or d = 1,

b � n=d if n < d � (n+ k), d 6= 0; 1,

(b+ cd)k=(1 � d)� cn if n � d � (n+ k), d 6= 0; 1.

Bounded variables

Bounded variables are not declared. They are bound to the rule where they

appear as part of the formal parameter list of the l.h.s., and they may only be

used in this same rule (in its r.h.s., in its condition or in its probability expression).

E.g., the rule

m(a0, t) # F(a0) [ + k(a0/2) ],

has the two bounded variables a0 and t, and only a0 is used on the r.h.s. The

value of such a variable is determined in the moment when the l.h.s. matches

with a symbol in the string to be transformed by rule application (either in the

generative, or in the interpretative application step). E.g., if the above rule is

applied to m(12, 4.2), the resulting assignments will be a0 = 12, t = 4:2 (and

m(12, 4.2) will be transformed into F(12) [ + k(6) ]). | Up to 40 bounded

variables (formal parameters) are allowed per rule.
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Registers

An extra role is played by the register variables r

0

, r

1

, . . . , r

9

. These have no

�xed names, to use them as variables in expressions requires the declaration of

some variables with the speci�cation register and with the corresponding register

number as parameter (see above). The register contents are initially zero. They

can be initialized with other values by the statement

nset In value,

or, equivalently,

nregister n value,

where n is the register number. An alternative is the user request at runtime,

induced by

nask In question text,

(cf. the nask-statement in Section 4.1). All these statements must appear in the

directive part of a grammar �le and are executed before the grammar begins to

transform the start string. If a later changement of register values is required,

the turtle commands In = (x), In+ = (x), In� = (x) or Jn = (x), Jn+ = (x),

Jn� = (x) are to be used (see Section 4.1).

4.4 Expressions and conditions

The general form of a growth grammar rule (cf. Section 3.2, De�nition 8) is

(condition) l.h.s. # r.h.s. ?(probability expression),

for generative rules, and the same with ## instead of # for interpretative rules

(see Section 4.2). (Be careful to leave blanks between the di�erent parts of a

rule.) The left hand side (l.h.s.) consists always of a single symbol, possibly

followed by a list of formal parameters, separated from each other by commas

and altogether enclosed in parentheses, like

leaf(x1; x2; t)

No constants and declared variables are allowed to appear in this list.

The right hand side (r.h.s.) consists of a string of such parametrized symbols.

However, in the case of the r.h.s. there can be arithmetical expressions instead

of single parameter names as arguments of the symbols. We speak simply of

expressions. Hence, the general form of a constituent of the r.h.s. is

symbol(expression 1; : : : ; expression k)

if k is the arity of symbol. The r.h.s. consists of several of such constituents,

separated by blanks. (The r.h.s. may also be empty.)



70 SYNTAX AND SEMANTICS

An expression may contain constants, declared variables and the formal parame-

ters from the l.h.s., which are combinedwith each other by arithmetical operations

or with the help of function symbols (see Section 3.2, De�nition 2 for a formal

de�nition of expression syntax). The usage of arithmetical operations and func-

tions is very close to the conventions of the programming language C (see, e.g.,

[15]). The following extensions to the C syntax have to be noted:

� There is an additional binary operator ^ symbolizing exponentiation, i.e.

a

b

= â b. The ^ binds closer than � and =, and these operators bind closer

than + and �.

� In the case of functions with no arguments, the parentheses are omitted.

(E.g., a + 2 � func instead of a + 2 � func() in C.) (Such a function must

necessarily be declared as a variable of type function, see Section 4.3, p. 68.)

� For numerical values, GROGRA has no operators like &&, jj, &, j, !, =, %

which can be used in C.

More explicitely, the following operators can be used:

� the binary arithmetical operators +, �, �, =, ^

� the unary operators �, (� as pre�x, as su�x operator; for the meaning

of see below)

� the unary standard functions exp (exponential function), log (logarithm

to the base e), sqrt (square root), atan (arcustangens with argument in

radians), atg (arcustangens with argument in degrees).

� the binary standard functions min, max

� declared variables of type function or array with the number of arguments

speci�ed in the declaration (see Section 4.3).

Expressions can be nested; arbitrarily many parenthesis levels are allowed (the

usage, however, being restricted by the machine stack). The length of an expres-

sion must be less than 100 characters in the current GROGRA version. Examples

for arithmetical expressions are

x

42

(4 + x) � 1066:5=y1

atg(45 + 3 � x 2̂)=min(time+ log(x); �p � q)

a0 + 17:5 + f1(sigma; 12:5 � exp(v))

(the f1 in the last line must be a declared function or array variable of arity 2).
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Thememory operator is symbolized by an underline character ( ) immediately

following a variable name. It is allowed only for declared variables and cannot be

applied to more complicated expressions. Its usage is restricted to cases where

the same variable name did already appear in the same rule, and its e�ect is that

it forces the variable to take on its former value again. This is especially senseful

in the case of random variables (type uniform, normal or distribution; see Section

4.3). E.g., if vt is declared by

nvar vt uniform 0 100,

then in the r.h.s.

a(0.7 � vt) L(vt ) D(vt /10) b(vt) c(vt )

the values of vt in L(vt ) and D(vt /10) will be the same as for the �rst (randomly

chosen) vt in a(0.7 � vt), while the argument of b will be a new random value

between 0 and 100, and the argument of c will be identical with that of b.

The memory operator is allowed only for variable identi�ers without arguments.

However, a construction like the following is legal:

nvar a array 1 2 10 10,

b(i, j) # D(a(i,j)) N(2.5�a ) F,

Here, the reading of a(i; j) from the �le with su�x .a01 takes place only when the

argument of D is evaluated, and the found value is also substituted for a in the

argument of N . (The same procedure is possible for variables of type function.)

Expressions which cannot be evaluated (like 1=0, sqrt(-1) or log(0)) induce

an error message at runtime which gives an information about the expression

causing the problem, e.g.

illegal sqrt in evalu!

(evalu is the name of the internal GROGRA subroutine which evaluates arithmeti-

cal expressions.) In such cases there will probably also be a further, subsequent

error message

Evaluation of [ string ] failed. atomeval un�nished.

with the demand to accept this message by pressing the return key. Here, string

is the expression where the evaluation problem occurred. Other possible error

messages in the case of syntactically incorrect expressions are

evalu: plevel < 0

evalu: suspicious parenthesis level

indicating a false arrangement of parentheses, or
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evalu: var. type wrong

evalu: illegal function syntax

evalu: array or function type misunderstood.

Declarations and usage of declared variables have to be checked again if one of

these messages occurs. The error message

evalu: readfromarr failed

indicates that something with the �le from which a variable of speci�cation array

gets its values (see Section 4.3) is wrong. Furthermore, the messages

evalu: not able to evaluate at all

and

expression string not canonical

indicate some error in the expression which cannot be further speci�ed. Check

the variable identi�ers, the correct usage of separating blanks and commas and

the distinction of upper case and lower case letters in such a case.

The probability expression of a rule | if one appears | has the same

syntax as the arithmetical expressions appearing in the r.h.s. However, in many

cases it will consist of a single 
oating point value between 0 and 1 (and the en-

closing parentheses can then be omitted). An improper syntax of the probability

expression will be indicated by the error message

Error in anwend� / evalu (probability)

or

Error in abarb� / evalu (probability).

(The �rst message refers to generative rule application, the second one to inter-

pretative rule application.)

The condition consists of arithmetical expressions which are combined by

comparison operators, namely,

> (greater than)

< (less than)

>= (greater or equal)

<= (less or equal)

= or == (equal)

!= (unequal).

These comparisons can in turn be combined using logical operators:
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&& (and),

jj (or),

! (not).

Parentheses inside a conditional expression are allowed. The whole condition has

to be enclosed in parentheses.

Thus, a possible condition would be

(t >= 0 && ! x = 2 jj !(x 2̂ < t/2 ))

(! binds stronger than &&, and && stronger than jj). In the case of an incorrect

syntax, there will appear error messages like

condevalu: Bad parenthesis level

condevalu: Bad jj sign

condevalu: �rst part of jj statement bad

condevalu: parentheses do not match

condevalu: evalu of left side failed

condevalu: no possibility to evaluate the expression

Error in anwend� / condevalu

or

Error in abarb� / condevalu.

The order of evaluation is always: First the condition (if one exists), then the

probability expression (if one exists), then the r.h.s. of the rule from left to right.

4.5 The repetition operator

The repetition operator is symbolized by the & character in connection with a

parentheses pair < > (less- and greater-character). Its usage is restricted to

the r.h.s. of rules where it serves as a means to replicate certain parts of the

string. The & character bears one argument (an explicit numerical value or an

expression enclosed in parentheses ( )) which speci�es how often the part between

the subsequent < and > is to be repeated. E.g., the rule

a # &4 < b >,

yields, when applied to the symbol a, the string b b b b. (The repetition factor

must follow the & character immediately, whereas the < and > character must

be surrounded by blanks.) In the current GROGRA version, the repetition factor

is restricted to numbers between 0 and 200. Non-integer values are rounded to

the nearest integer. For the expression behind the & character, all possibilities

for arithmetical expressions stand open (see Section 4.4). E.g., the following rule

is allowed
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a(t) # b &((t/2)̂ 2) < a(0) F > c,

and leads, when e.g. applied to a(3), to the string

b a(0) F a(0) F c

because (3=2)

2

is rounded to 2.

Between the < > pair, it is possible to use an index variable which serves as a

counter for the repetitions. This variable must be declared in the directive part

of the grammar �le as a variable of speci�cation \index" (see Section 4.3). The

counting begins with 0. E.g., the following combination

nvar j index,

a # &4 < RH(j � 360 / 4) [ b ] >,

leads, when applied to a, to the string

RH(0) [ b ] RH(90) [ b ] RH(180) [ b ] RH(270) [ b ] .

An important restriction in the current GROGRA version is that it is forbidden

to use nested repetitions like&(m)< &(n) < b> >. This restriction will probably

be removed in one of the next GROGRA versions.

4.6 Method calls

Sometimes it is useful to perform certain calculations during the interpretation of

a grammar which can badly be speci�ed by the grammar itself. For this purpose,

GROGRA o�ers the possibility to link certain procedures, so-called methods,

with the main program. They can then be invoked during the interpretation of

a turtle string by a simple command. Methods are identi�ed by their number.

The turtle command for the execution of a method is

Mn;

with n being an integer, the method identi�er.

The currently available methods are

method 1: a procedure for assimilate distribution in a simple model plant (see

Example 6.7, p. 151), utilizing the registers 1 to 4,

method 2: a procedure which re-calculates the diameters of all elementary units

of the actual attributed geometrical structure which is in construction when

the method is called. The calculation of diameters is done by assigning a

default diameter (depending on length) to all terminal shoots and by as-

suming a conservation of sectional area in all branching nodes (\da Vinci's

law", see [78]). The method works only in RAM mode (see Section 5.4).
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method 3: a procedure which eliminates all elementary units with accumulated

n-value equal to zero in the currently constructed structure. The accumu-

lation of n-values (standing for needle surfaces in the applications) is done

recursively by adding the n-value of each unit to all topological predecessors

of this unit where the q-value is � 0:5, and half of the n-value to the ac-

cumulated value of the unit itself (unit-central accumulation). The method

works only in RAM mode (see Section 5.4).

4.7 Sensitivity

Sensitive growth grammars are used when the geometrical arrangement or the

attributes of the last created structure have to be taken into account during

the generative rule application leading to the next structure (cf. Section 2.1).

GROGRA enables this by the usage of a protocol �le (named protok.oll) which

saves the internal addresses of the elementary units of the last created structure

in the order of the associated turtle commands and thereby establishes a link

between the string to which the generative rules are applied and the last structure.

(Interpretative rules are not allowed to make use of sensitivity.) Because the

writing and reading of this auxiliary �le costs extra time, GROGRA handles

sensitivity as an optional feature which must deliberately be chosen by writing

the grammar into a �le with su�x .ssy instead of .lsy (as for ordinary, non-sensitive

growth grammars) and by selecting the submenu item

sensitive growth grammars <S>

in the \Generation of a new branching structure"-submenu. Non-sensitive gram-

mars can also be applied under this option, but this costs unnecessary extra

time.

Sensitivity is introduced in growth grammars in two possible ways (which can be

combined):

� by the use of declared variables of the types xcoordinate, ycoordinate or

zcoordinate, which assume the value of the respective coordinate of the

elementary unit endpoint in the last structure which is associated to the

symbol at work,

� by the use of sensitive functions, which must be declared as variables of

type function, namely, the functions 1, 2 and 3 in the current GROGRA

version (see Section 4.3, p. 68). Sensitive functions are able to refer to

the associated elementary unit and to the whole last structure as its global

context.



76 SYNTAX AND SEMANTICS

The elementary unit in the last created structure to which a symbol is associated

is always the unit which was created by the last preceding F command. If there

is no such command, it is not de�ned and the application of a sensitive rule will

lead to a program breakdown.

If an interpretative rule was used to create the last structure, only the unit

created by the last F command in the r.h.s. of the interpretative rule can be

referred to by sensitive rules. E.g., in the sensitive two-phase system

nvar z zcoordinate,

a # b c a,

(z > 50) c # [ RU60 P14 F10 ],

b ## P4 F5 P2 F10,

the variable z will always contain the height of the top end of the longer, colour

2 (green) subsection of the axis built by b, and the branching determined by the

second, sensitive rule will depend on this height.

The variable types xcoordinate, ycoordinate and zcoordinate have to be care-

fully distinguished from the types length, diameter, n value etc. (see Section 4.3).

A variable of coordinate-type refers to the unit associated to the actual symbol in

the last created structure and can be used only in generative rules (in sensitive

grammars). A variable of one of the types length, diameter, n value, v value, color

or q value, on the other hand, refers to the actual turtle state and thereby to the

structure which is just to be created, and can be used only in interpretative rules

(in nonsensitive or sensitive grammars).

An example for a sensitive function is function number 2, which calculates

the distance to the nearest unit which is longer than the value given as argument

(cf. Section 4.3, p. 68). The following system

nvar f function 2 1,

.

.

.

(f(10) > 50) a # [ RU30 F a ] RU30 F a,

.

.

.

determines the shoot tip corresponding to a to branch and grow only if no shoot

longer than 10 length units comes with its base or end nearer than 50 length units.

(The shoot itself and its mother shoot are excluded from the distance calculation.)

If the restriction to shoots longer than 10 length units is not needed, it is possible

to declare

nvar f function 2 0,

and then to write

(f > 50) a # [ RU30 F a ] RU30 F a,
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causing f to investigate the distances of all shoots except the shoot corresponding

to a itself and its mother shoot. See Chapter 6 for further examples of sensitive

grammars.
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Chapter 5

Reference guide to the GROGRA

software

5.1 The internal representation of a branching

structure

Each attributed geometrical structure (cf. Section 4.1) which is generated ac-

cording to a growth grammar with the syntax described in the last chapter, is

internally represented by GROGRA as a linked list in the main memory (RAM

mode) or as a sequentially organized external data �le (HD mode, see Section

5.4). The two modes di�er only in organizational aspects, and we will refer to

the RAM mode here, which is the default when GROGRA is started. See Section

5.4 for a list of the restrictions inherent to HD mode.

The list elements are data sets (records), each corresponding to an elemen-

tary unit (shoot) of the geometrical structure. The data enclosed in such a record

stand in close correspondence to the turtle state variables (cf. Section 4.1) which

were actual at the moment when the corresponding elementary unit was created

by the turtle. We call them elementary unit variables. They contain all geome-

trical informations and attributes which are available in GROGRA about this

speci�c elementary unit. We refer to them partially with the same names as for

the turtle state variables:

P = (p

x

; p

y

; p

z

), a vector representing the position of the basis of the elementary

unit (i.e. the midpoint of the basal circle, see Fig. 23),

Q = (q

x

; q

y

; q

z

), a vector representing the position of the tip of the unit (i.e. the

midpoint of the circle at its top),

H = (h

x

; h

y

; h

z

), a vector of length 1 in the direction of the unit's axis,

L = (l

x

; l

y

; l

z

), a vector of length 1, orthogonal to H, resembling the L direction

of the turtle in the moment of creation of the unit,

79
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U = (u

x

; u

y

; u

z

), a vector of length 1, orthogonal to H and L, resembling the U

direction of the turtle in the moment of creation of the unit,

i, an integer serving as identi�er of the unit,

s, a reference (pointer) to the successor unit in the internal list,

m, a reference to the mother unit ,

c, a reference to a unit prolonging the same axis (see Section 5.5, Transformation

for HYDRA, p. 119),

`, a real number representing the length of the elementary unit, i.e. the distance

between P and Q,

d

b

, a real number representing the diameter of the unit at its basis,

d

t

, a real number representing the diameter of the unit at its top end (normally

identical with d

b

),

n, a real number representing some non-geometrical parameter of the unit, cur-

rently used for needle surface,

p, an integer representing the colour of the unit (see Appendix 1),

q, a real number between 0 and 1 representing the relative position of the unit's

basis along the mother unit (0 = unit emerges at the top of the mother

unit, 1 = unit emerges at its bottom),

b, an integer representing the branching order of the unit,

g, an integer, called the generative distance, indicating normally the number of

units between the current unit and some mother-less \root unit", but also

used for other purposes (see Section 5.5),

x

b

, y

b

, x

t

, y

t

, four auxiliary variables (real numbers) used for di�erent purposes

during the graphical display and in transformation and analysis procedures

(especially during the transformation for HYDRA, p. 119: x

b

for the LSC

value, y

b

for the ratio length/LSC, x

t

for the criterion distance, y

t

for the rel-

ative deviation (`�x

t

)=x

t

; furthermore in the \lengths and angles" analysis:

x

b

for the cluster index, y

b

for the number of daughter unit clusters.)

The elementary unit variables s, c, x

b

, y

b

, x

t

and y

t

are dedicated to internal

purposes and are normally not accessible to the user. The rest of the variables can

be controlled for each shoot by calling the menu item \List the actual structure" in

the main menu of GROGRA. For each structure and for each unit of the structure

(displayed in the order given by the linked list established by the s pointers) there

will be a screen display (which can also be printed or written into a �le) giving

the elementary unit variables for one unit in the following form:
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Shoot number i, emerging from shoot number (i of m):

length: `

diameter at bottom: d

b

diameter at top: d

t

leaf parameter: n

color attribute: p

order: b

generation number: g

q value: q

position of beginning of shoot:

x coordinate: p

x

y coordinate: p

y

z coordinate: p

z

position of end of shoot:

x coordinate: q

x

y coordinate: q

y

z coordinate: q

z

sh: (h

x

, h

y

, h

z

)

sl: (`

x

, `

y

, `

z

)

su: (u

x

, u

y

, u

z

)

The reference m to the mother unit, being essentially a pointer in the program-

ming language C, is not displayed directly, but represented by the identi�er i of

the mother unit. There will be the display -2 if no mother unit exists. | All


oating point values will be given with an accuracy of 6 digits behind the decimal

point.

If a growth grammar was applied, there will normally be a complete se-

quence of structures present in the memory. They are numbered, beginning with

1, and structure number k is indicated in the \list" mode in a line

Structure number k:

which precedes all elementary units of this structure. By the second item of the

submenu entered when \List the actual structure" was chosen, it is possible to

select a speci�c structure number and shoot number for display.
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Fig. 23: An elementary unit with its geometrical variables

and mother unit

5.2 Menu items

We refer to each menu item in the form

item text [ submenu where the item appears ]:

Some menu items appear only when speci�c transformations have been done

before. This will be noted in the comments to the items. Each menu item can

be activated by the mouse or with some key on the keyboard (cf. Section 3.2).

a Generation of a new branching structure [Main menu]

This is normally the �rst menu item to be invoked when a new structure is to be

created. If there is already a structure present in the memory which is not yet

saved on disk, after activation of this item there will be a small submenu

Attention: There is already a structure.

Overwrite <U>

Back to the Main Menu <Z>
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Choose \Overwrite" if really a new structure shall be made.

give all segments explicitely < E > [Generation of a new branching structure]

This item is included for test purposes only, and its usage is not recommended

to the normal user of GROGRA. It enables the user to specify an attributed

geometrical structure \by hand", i.e. by the online input of all necessary data for

each elementary unit. This speci�cation will be a rather time-consuming labour

even for small structures.

When this item is invoked, the �rst input to make is a coordinate triple for the

point where the new geometrical structure shall emerge, i.e. the basal point P of

the �rst shoot. This is required by the text

Please specify the position of the reference point.

x coordinate?

When all three coordinates have been speci�ed (e.g., by typing \0"), the next

output will be

Mother shoot number 0

How many daughters shall this shoot have?

The newly created structure will have an invisible basic elementary unit with

length 1, diameter 0 and order -1, extending from (r

x

; r

y

; r

z

� 1) to (r

x

; r

y

; r

z

),

if (r

x

; r

y

; r

z

) is the speci�ed reference point. This basic unit, which serves

for reference purposes, is referred to as \Mother shoot number 0". With the

speci�cation of the number of its daughters, it is speci�ed how much elementary

units will emerge from the basic reference point of the structure. (Type \0" here

if you want to leave this input procedure quickly.)

After an integer > 0 is typed in, GROGRA demands the input data for each

daughter shoot, one after the other (i.e. the elementary unit tree is speci�ed in

breadth-�rst order). The positions of the new units are to be speci�ed by angles,

lengths and relative positions of branching points relatively to the mother unit,

i.e. no absolute coordinates are to be typed in besides the very �rst, basal triple.

The �rst such relative speci�cation is asked for by the text

Which angle (in degrees) shall the shoot have with

respect to the mother shoot axis?

A branching angle is required here (angle � in Fig. 24). The next question is

Which angle (in degrees) shall the shoot have in the

plane orthogonal to the mother shoot?

This asks for the spatial orientation (azimuth), i.e. angle � in Fig. 24. � = 0

means a direction pointing as steeply as possible \upwards" or, in the case of a

mother axis parallel to the z axis, the direction of the x axis.
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Next, the relative position q (see Fig. 24), the length `, the bottom and top

diameter d

b

and d

t

, and the \leaf value" n are to be speci�ed. (Only the top

diameter d

t

is taken into account in the graphical display in the current GROGRA

version.) The branching order b is not speci�ed, it is constantly 0 for all branches

except the �ctitious basal reference branch with order -1. The colour is always

\light green".

By the speci�cation of the number of daughter shoots, the user can control how

many units he wants to specify further, and thereby how large the structure shall

be.

Fig. 24: Relative speci�cation of an elementary unit (shoot)

Turtle geometry without grammar <T> [Generation of a new branching struc-

ture]

This item is also mainly intended for test purposes. It enables the user to give

in a string which is then directly treated as a turtle command sequence. No

interpretative or generative rules come into play here. All turtle commands are

allowed, but with numerical arguments only, not with arithmetical expressions as

arguments. Additional symbols are also allowed, but they make no sense here, as

they are treated like blanks. The default values for the turtle state are the same

as those given in Section 4.1. There is no possibility to alter them by a set- or
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ask-command.

The input of the turtle command string is required by

Please give the string to be executed:

The string may extend into the second line (don't use the return key, just continue

writing), but its length is restricted to 127 characters.

non-sensitive growth grammar <N> [Generation of a new branching structure]

This is the standard item for the creation of a structure from a growth grammar,

when no sensitivity is required. To make use of it, it is necessary that at least one

grammar �le with the su�x .lsy| created with some text editor, and containing a

non-sensitive growth grammar with the syntax described in the preceding chapter

| exists in the subdirectory where GROGRA is executed.

When the menu item is activated, GROGRA announces

� � � Application of a parametric L-system � � �

The following L-systems are actually available:

and gives then a list of the available .lsy-�les. If there are too many �les for a

single screen display, the continuation of the list must be allowed by a keypress.

Afterwards, GROGRA asks

Name of the L-system �le (without extension):

E.g., if the execution of epi1.lsy is demanded, one should type in epi1 and then

the return key. The correct reading of the grammar �le (together with a �rst

syntactical check) will be con�rmed by

L-system successfully read.

In the next step, the start word must be typed in. For all examples in this

manual, this is the � (star character), but it is possible to give in any string here.

If, however, the start string consists only of characters for which no rule of the

loaded grammar is applicable, GROGRA will not send any error messages, but

just produce the empty structure (seen as a black screen in the graphical display).

After reading the start word, the number of steps to be executed is asked

for. This is at the same time the number of structures which can be created

from the grammar and from the start word, forming a developmental sequence

(see Section 2.1). If the number exceeds a certain limit (which depends on the

machine and is 49 for the PC version at the time), the number is refused and the

user is asked again. If the number is accepted, there will appear the question

Execution only of speci�ed developmental steps (give <s>

and <return>) or of all steps (any other input):
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The standard input would be just <return>, which induces GROGRA to execute

all generation - interpretation - cycles completely. By typing \s", some interpre-

tative parts can be deliberately omitted by the user. E.g., if the number of steps

is 5 and only the steps 2 and 5 are speci�ed, the execution scheme will be that

of Fig. 25.

- - - - -

? ?

? ?

� �

1

�

2

�

3

�

4

�

5

�

0

2

�

0

5

S

2

S

5

Fig. 25: Restricted interpretation of a

non-sensitive growth grammar

The speci�cation of the numbers of the structures to be created is done after

s<return> is typed in. Each number is to be written in a single line, and the

whole list has to be �nished by an empty line.

GROGRA will then perform the prescribed generation - interpretation -

cycles, indicated by the comment \First step of 5: Structure is generated." etc.

Eventually, ask-statements or user-de�ned variables cause interruptions where

some values have to be given in. The text \Structure is generated" appears only

for those steps for which the interpretation is in fact done.

If the cycles are executed correctly, the message

Prescribed number of steps is done.

Execution of this L-system �nished.

will appear. If a memory shortcut arises, a warning will appear before (see

Section 3.2), but the structure will nevertheless be generated, eventually with

missing units. (Choose the HD mode (see Section 5.4) or another machine in

such a case.)

During the execution of the grammar, the auxiliary �les lstri.str and lhilf.str

will be created on the disk. Both contain afterwards the turtle command string

corresponding to the last developmental step. If a grammar does not work how

it should, it can be useful to have a look at these �les.
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The sequence of structures is now present in the memory, and there are the

possibilities to save, show, list, analyze or transform it.

sensitive growth grammar <S> [Generation of a new branching structure]

The procedure after activation of this menu item is essentially the same as for

non-sensitive growth grammars. Instead of .lsy-�les, �les with the extension .ssy

are listed here. The option to execute only speci�ed steps is not possible for

sensitive grammars, because each generative step requires the presence of the

structure created from the string to be transformed (cf. Fig. 12, Section 2.1).

Additional to lstri.str and lhilf.str, a �le protok.oll is created on disk, containing

unit addresses (normally of no interest for the user).

b Read a structure from a �le [Main menu]

Before this item is activated, there should be at least one �le with su�x .dta, .dtb,

.dtd, .pbg, .sbg or .map, containing encoded informations specifying attributed

geometrical structures, present in the subdirectory where GROGRA is executed.

The di�erent data formats are explained in detail in Section 5.5.

Standard data (format .dta) <A> [Read a structure from a �le]

The dta format is the only one which allows it to store a complete developmental

sequence of structures in one and the same �le. Hence, a sequence of structures is

read when this menu item is invoked. (The sequence can, however, also consist of

only one structure.) The dta format being the standard format used by GROGRA

for saving structures in �les, it contains all necessary informations to reconstruct

a sequence of attributed geometrical structures (see Section 5.5, p. 110, for an

explicit description of the data format). However, the reading process can take

considerable time for larger structures, because the re-installation of the mother

unit linkages requires extensive searching.

After activation of the menu item, a list of the available �les with su�x dta

(in the subdirectory where GROGRA is executed) is displayed, as in the case of

lsy- or ssy-�les for grammar execution. One of the �lenames from the list (without

the su�x) has to be typed in. During the reading process, there will be a message

Reading. . . please wait.

If the reading fails or the �le cannot be opened, the program will be stopped with

the message

There is some trouble with the �le.

The program halted.

Press any key.

Otherwise, the message
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reading process �nished.

Press <return> to continue.

will indicate that the read structure is now present in the memory and can be

worked with.

During the reading of a dta �le, there is no rigid syntactical check whether the data

in the �le are correctly arranged. Thus, it can happen that after an apparently

successful reading process the structure is either erroneous or empty. But this

will normally not occur if the dta �le is not manipulated by hand but written

directly by GROGRA itself (see the menu item \Save in standard format (.dta)").

Autocad exchange data (format .dtb) <B> [Read a structure from a �le]

The �le speci�cation and reading is performed in the same manner as for dta data

above. However, each dtb-�le contains information about only one developmental

step, and moreover, the information carried in a dtb-�le is far more restricted and

does not allow the faithful reconstruction of the structure. Only the elementary

unit variables P (basis position), Q (tip position), d

b

(basis diameter), and d

t

(top diameter) are read; H (direction) and ` (length) are re-calculated from these

data. The colour is constantly set to \white" for all units, the leaf parameter n

to 0. There is no calculation of branching order or generative distance, the cor-

responding variables being set 0, as are q, L and U . The topological information

(mother unit linkages) is also lost.

data from HYDRA <C> [Read a structure from a �le]

This menu item is devoted to the reading of structure descriptions in the format

used by the discretization and water transport simulation programs DISC and

HYDRA (see [41]). Contrary to the other reading items, no list of the available

�les is given after activation of this menu item. This is due to the fact that several

distinct su�xes of �lenames are allowed here, namely, .pbg, .sbg, .bag and .map

(see Section 5.5, p. 119, for the meaning of pbg- and sbg-�les and for detailed

informations about the interface to HYDRA). The �lename has therefore to be

speci�ed including the su�x.

As HYDRA refers to trees, the tree species is to be speci�ed by a number

before the reading process starts. (GROGRA displays a list of the possible tree

species with their respective identi�cation numbers.) Afterwards, like in the other

reading items, there will be the message

Reading. . . please wait.

Additionally, the unit numbers will be shown in the form dnr = n, forming a long

column of numbers on the screen. As the result of the reading, there will be two

structures present in the memory, which are identical: a standard structure (more

precisely, a sequence of structures consisting of one structure only, bearing the

number 1) and a pbg-structure (see Section 5.5, p. 119. Note that the reading of
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an sbg- (or bag-) �le does also yield only a pbg-structure, never an sbg-structure

(\last modi�ed structure") in the sense of GROGRA!) The input from the �le is

�nished when the message

Reading process �nished, press <return>.

appears.

The information about the elementary units available from the HYDRA formats

is restricted and does not allow a faithful reconstruction of a structure. The

following variables are read from the �le for each unit: m (the mother unit iden-

ti�er, which is reconstructed from a number found in the �le), ` (the length), d

b

(basis diameter), d

t

(top diameter, always equal to d

b

), n (needle surface). There

is no angle information available from the �le. The branching angle for all side

branches (units not prolonging the axis of the mother unit, an information which

can be taken from the �le) is assumed to be 50

�

, the azimuth is taken randomly

for each elementary unit. From these angles, from the length and from the already

constructed mother unit the start and end position P and Q of the unit as well

as the directions H, L and U will be calculated (cf. the item \give all segments

explicitely", p. 83, in the submenu \Generation of a new branching structure"). The

colour p is always \white", the q-value 0 (this being indeed the correct value in a

structure having side branches only at the top ends of the units), the generative

distance 0 and the branching order b determined recursively: The basic unit (with

no mother unit) has order 0, and a daughter unit of a unit having order b has

order b+1, if it is a side branch, and order b, if it prolongs the axis of the mother

unit. The auxiliary variables x

b

, . . . , y

t

(including the LSC) are not read from

the �le, but have to be recalculated.

descriptive data (format .dtd) <D> [Read a structure from a �le]

The descriptive data format dtd (see Section 5.5, p. 112) is meant for singular

geometrical structures obtained from �eld measurements. The reading procedure

is started in a similar manner as for dta- or dtb-�les. After the speci�cation of

the �lename, GROGRA will ask

Are buds to be included? (y/n):

If \n" (or an arbitrary other letter di�erent from \y" or \j") is typed in here, lines

in the dtd-�le which are marked by the letter \K" (and are meant to specify buds)

are not translated into elementary units like the other data lines. Otherwise, all

lines will be taken into account.

GROGRA will also ask for a \default shoot diameter". The number which

is typed in as an answer here is taken for the diameter variables d

b

and d

t

for

all those elementary units for which no diameter is speci�ed in the dtd-�le (the

diameter speci�cation is optional in the dtd format, see Section 5.5). The value

should normally have an order of magnitude of about 1.

The execution and completion of the reading process is indicated by



90 REFERENCE GUIDE

Reading . . . please wait.

and

Reading process �nished, press <return>.

As in the case of explicit construction of branching structures by hand, an invisible

reference shoot is constructed at the basis of the structure, having order -1 and

length 0 here. Positions and directions of the other shoots are calculated from

lengths, relative positions and angles which are speci�ed in the dtd-�le. The

branching order of a unit is calculated recursively: A daughter unit of a unit

having order b has order b+1, if an azimuth speci�cation was made in the dtd-�le

or if the branching angle relative to the mother unit is greater than 0, otherwise it

is treated as an axis-prolonging unit having the same order b as the mother unit.

This automatic order calculation is overridden if an explicit order speci�cation

(by an O or V statement) was made for the unit in the dtd-�le. The generative

distance is calculated automatically as g + 1, if that of the mother unit is g, but

is overwritten by G- or J-statements in the dtd-�le (see Section 5.5). The colour

is light green throughout the structure. The leaf parameter n is assumed to be

0 if no N-speci�cation is read from the dtd-�le. Positions, directions, topological

linkages and q-values are calculated for each unit, and the structure obtained from

a dtd-�le will therefore be quite thoroughly speci�ed and thus be comparable to

arti�cial structures from growth grammars.

It is to be remarked that a structure created from a dtd-�le will not necessarily lie

in a suitable position for graphical display in \side view". The option \arbitrary

direction of view" should be chosen then.

c List the actual structure [Main menu]

This item delivers explicit control informations about elementary unit variables.

When the item is activated, there will �rst be a submenu entitled \Output device"

listing the devices \Screen <B>", \Printer <D>" and \File <F>". If File is

chosen, a �le name has to be speci�ed later. If a pbg-structure (or a pbg- and

an sbg-structure) is present in the memory (see Section 5.5, p. 119), there will

appear a small submenu entitled \What shall be given?" and containing the items

\The unmodi�ed structure <A>" (meaning the original sequence of structures)

and \The �rst modi�ed structure <B>" (referring to the pbg-structure) | and,

eventually, also \The last modi�ed structure <C>" (referring to the sbg-structure).

The next submenu is entitled \Output of which structures / shoots" and has the

two items

all <A>

beginning from a speci�ed structure / shoot <S>.

If \all" is chosen, the order of display will be
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Structure number 1

Elementary unit number 1

Elementary unit number 2

.

.

.

Structure number 2

Elementary unit number 1

Elementary unit number 2

.

.

.

.

.

.

In the other case, the display will begin with the structure and unit number spec-

i�ed by the user and then proceed in the same order. The display of elementary

unit variables itself is explained in Section 5.1 (p. 79 �.). It is continued by the

return key and can be stopped by typing \q" and return.

If a structure has no elementary units, this will be indicated by

Structure number n: empty.

However, it can happen that no display at all is shown, and the main menu is

immediately there again. In that case, all structures are empty.

d Store or transform the actual structure [Main menu]

Here, the complementary process to reading from �le, i.e. saving, is accessible to-

gether with speci�c transformation procedures. Before this menu item is invoked,

there should be a structure present in the memory, either created from a grammar

or read from a �le. A submenu entitled \Which kind of saving or transformation

shall be carried out?" will appear immediately after activation of the item.

Save in standard format (.dta) <A> [Store or transform the actual structure]

This saving option stores the whole developmental sequence of structures which

is currently present in the memory in one �le, using dta-format (see Section 5.5,

p. 110). The �lename is to be speci�ed (without the su�x .dta). It should respect

the obligations for �lenames in the DOS (resp., UNIX) operating system.

When the writing process has come to an end, there will appear the message

Saving �nished, press <return> to continue.

The dta-�le with all informations about the structure will now be present in the

subdirectory where GROGRA is executed. The saved structure will remain to

be present in the memory such that further display, analysis, transformation or

saving is possible.
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Save in .dta format, only one developmental step <E> [Store or transform

the actual structure]

After activation of this item, GROGRA asks for a number between 1 and the

number of structures forming the actually present developmental sequence. If n

is typed in, only the n-th structure will be saved in dta-format.

Save in format for external exchange (.dtb) <B> [Save or transform the actual

structure]

The dtb-format is mainly used for communication with the AUTOCAD system.

When the menu item is activated, the number of the structure to be saved is

asked for, as under the preceding item. Afterwards, a �lename (without su�x)

has to be speci�ed.

Transform and save for HYDRA <C> [Store or transform the actual structure]

By this menu item, a more complex transformation and saving procedure is

initiated which is explained in more details in Section 5.5, p. 119 �. First, the

number of the structure (as part of a developmental sequence) to be transformed

has to be speci�ed, like under the two preceding items. When this is done,

GROGRA will ask

Screen protocol (with delays) required? (n=no):

If another input than \n" is given, some messages about extremal situations,

transformation performance and speci�c parameters will be displayed on the

screen during the subsequent transformation process, causing some delay of 1

or 2 seconds for each message to make it readable. As this can cost a consider-

able amount of time when a large structure is transformed, there is the possibility

to switch o� this automatic screen protocol by typing \n". However, all infor-

mations will be written into a special protocol �le named standard.gpr in every

case.

Subsequently, GROGRA will copy and modify the speci�ed structure (see

Section 5.5, p. 119), indicating the transformation steps more or less extensively

on the screen (and also in the protocol �le which can be studied later). This

transformation closes with the screen display

STORING THE ACTUAL STRUCTURE USING DATA FORMAT C

The data are written into a �le with the extension

.pbg.

name of the �le (without the prescribed extension .pbg):

Here, a �lename without su�x has to be speci�ed. The �le created in this writing

step contains the informations describing a \primary base grid", i.e. a structure

which resembles the original structure topologically but which is made up only of
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elementary units which extend from one branching node to the other, or from a

branching node to a branch tip. (See Section 5.5, p. 119, for more details.) This

modi�ed structure is saved as pbg-�le and will also be present in the memory. It

will be referred to in the menu items as the \�rst modi�ed structure". After saving

the pbg-�le (together with some data display on the screen), there will appear a

new submenu entitled \Further transformation of the structure" and containing 7

items. Basically, there is now the alternative to go back to the main menu (item a)

or to continue the transformation process, leading to a so-called \secondary base

grid" (sbg) which is topologically and geometrically changed by melting branch

nodes which are \too close together" (items b to g). There is the possibility to

create and save several sbg-structures, one after the other.

The submenu items b to g, showing the text

Secondary dissection using median (nth percentile, minimum)

of L/LSC: (number)

or

Secondary dissection using arbitrary (L/LSC)-creation factor

o�er several possible parameter combinations for the creation of the sbg-structure

(see Section 5.5). If one of the items b{f is selected, the indicated percentile value

(resp., minimum) will be chosen as \creation factor", whereas item g demands

the explicit speci�cation of this factor by the user with the call

Please specify the L/LSC value to be used as creation factor:

When the desired number is given in, there will appear another question, which

is also the next output after one of the items b{f was activated:

Please specify the min. ratio for L/crit.dist. (preferable: 0.5):

When this input is done, there will appear another screen protocol (if not switched

o�), and eventually the display

STORING THE ACTUAL STRUCTURE USING DATA FORMAT C

The data are written into a �le with the extension

.sbg.

name of the �le (without the prescribed extension .sbg):

Now, after speci�cation of a �lename without su�x, the sbg structure will be

saved and will also be present in the memory. This structure will be referred to

in the menu items as the \last modi�ed structure".

GROGRA will afterwards return to the submenu \Further transformation of

the structure". If now one of the items b{g (\Secondary dissection. . . ") is selected

again, the sbg-structure will be overwritten (in the memory, but of course not in

the sbg-�le, if a new �lename is speci�ed). When we return to the main menu, we



94 REFERENCE GUIDE

have now both modi�ed structures (the pbg- and the sbg-structure) | together

with the original, unmodi�ed sequence of structures | in the background and

can list or watch them by graphical display.

Attention: If the item \Transform and save for HYDRA" is activated a second

time, both structures will be overwritten.

Fig. 26: Menu calls associated to the interface to HYDRA

Transform the existing pbg-structure <P> [Save or transform the actual struc-

ture]

This menu item does only appear when a pbg-structure is present in the memory,

either created by activating the preceding item \Transform and save for HYDRA"
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(see above) or by reading a pbg- or sbg-�le. It enables the creation of sbg-�les

from input in HYDRA style read from a �le or from a just created pbg-structure,

when the transformation process was deliberately interrupted by the choice \a:

Back to the main menu" in the submenu \Further transformation of the structure".

The procedure after activation of this menu item is an abbreviated ver-

sion of the procedure encountered when having activated \Transform and save for

HYDRA" (see above). There will be a re-calculation of some data (LSC values)

associated to the pbg-structure, and afterwards the submenu \Further transforma-

tion of the structure" (which was already discussed above) will appear, giving the

opportunity to create sbg-structures.

Fig. 26 visualizes the possible orders of menu calls in connection with the interface

to HYDRA. See also Section 5.5, p. 119.

Transform all the parameters N <N> [Save or transform the actual structure]

By activating this menu item, it is possible to overwrite the variable n (standing

in most applications for leaf area of a shoot) of all elementary units of a structure.

(This step changes the structure, so the structure should possibly saved in a dta-

�le before.) As the modi�cation of the n values will be carried out for only

one single structure, not for the whole developmental sequence which is possibly

present in the memory, the �rst question will be for the number of the structure

to be transformed, like for the other menu items described above. (There is no

possibility foreseen to modify the n-values of a pbg- or sbg-structure.)

After the number of the developmental step is speci�ed, there appears a submenu

entitled \Transformation of parameter N (Attention! This is irreversible!)" which

o�ers, besides the possibility to go back immediately, the following options:

Transformation according to linear law <B> [Transform all the parameters N]

If N is the old value of variable n and N

0

the new one, the new value will be

calculated for each elementary unit from the equation

N

0

= interc+ nfact �N;

where interc and nfact are real-valued constants which have to be speci�ed by

the user when this option is selected.

Of course, this transformation makes only sense if there are nonzero N -values

present in the actual structure.

Transformation according to power law <C> [Transform all the parameters N]

This option is similar to the preceding, it di�ers only in the transformation law:

N

0

= nfact �N

expon

;

where nfact and expon are again user-speci�ed constants. This as well as the

preceding transformation are designed primarily for the purpose of transforming

one leaf parameter (e.g., needle dry weight) into another (e.g., needle surface)

with the help of some standard regression equation.
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Linear dependence from length and age-dependent decline <D> [Transform

all the parameters N]

In contrast to the preceding transformations, this one is designed for structures

where no values of the variable n are yet speci�ed for the elementary units. It

calculates the new N-values in dependence of two other elementary unit variables,

namely, length (`) and age (a), the latter being taken from the generative dis-

tance g by a = g

max

� g, where g

max

is the maximal value which the elementary

unit variable g assumes in the structure to be transformed. The transformation

equation is

N = agefact(a) � (interc+ nfact � `):

The real-valued constants interc, nfact and agefact (0), agefact (1), . . . , age-

fact (7) are asked from the user. It is assumed implicitely that agefact(a) =

agefact(7) for all ages a > 7.

(For realistic conifer examples, one should choose interc to be roughly zero, nfact

roughly 80, agefact(0) = 1 and agefact(a) as tending against 0 for high values

of a.)

In all cases, the transformation is carried out without a con�rming message; one

turns immediately back to the main menu.

e Show the actual structure graphically [Main menu]

Under this item, not only the graphical display on the screen is accessible, but

also the options to write �les in HPGL or Postscript format for a plotter or

printer.

The graphical display of an attributed geometrical structure is done by �rst pro-

jecting it along a user-selected direction on a plane orthogonal to that direction

(parallel projection) and then determining a rectangular part of this plane for

showing it on the screen and / or plotter / printer. The �rst submenu entered

when having activated the menu item is therefore entitled \Direction of view" and

o�ers three possibilities:

side view <A>

view from above <B>

arbitrary direction of view <C>

The �rst option de�nes the projection to be carried out parallel to the y axis, the

second one parallel to the z axis. The third option entails two requests:

GRAPHICAL OUTPUT

Please specify the direction of view:

Angle in the xy plane (y-direction = 0) in degrees?

Slope of view relative to the horizontal (in degrees)?
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Here, two angles, an azimuth � and a slope 
, have to be speci�ed (Fig. 27).

Fig. 27: Speci�cation of view

If a pbg-structure, or a pbg- and an sbg-structure, are present in the memory (see

Section 5.5, p. 119 �.), there will appear a submenu

What shall be given?

The unmodi�ed structure <A>

The �rst modi�ed structure <B>

The last modi�ed structure <C>

(the last item shown only when an sbg-structure is present). The �rst option refers

to the standard developmental sequence, the second one to the pbg-structure,

and the third one to the last sbg-structure which was created (and which is then

automatically the only one still present in the memory). The display of a pbg- or

sbg-structure includes always only one developmental step.

In the UNIX version of GROGRA, there will be another submenu entitled \Dis-

play" with the options

Standard format <S>

Full screen <F>

The option \Standard format" de�nes for the graphical display a window on the

screen which has the same size than the window used for the menus. This can

have advantages because a part of the workstation screen remains free for other
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applications to be run parallel. In the DOS version, the \full screen" option is

assumed automatically.

After these speci�cations, there will possibly be a certain waittime because the

coordinates in the projection have to be calculated and their maximal and mini-

mal values to be determined. Then a text display entitled \Now there will be the

graphical output" appears which contains the coordinate limitations of the area

from the projection plane to be shown, and informations about the commands

which are possible in the graphics mode of GROGRA. These commands will be

explained in Section 5.3, p. 107. By a keypress (<return> in the UNIX version)

one will enter the graphical display, showing the actually present developmental

sequence of structures, one structure after the other (the next one being displayed

by pressing the <space> key), and with the number of the structure displayed

in the upper left corner. All structures of a developmental sequence are shown

in the same scaling. Structures which are empty (or which are not generated

according to a speci�cation to leave them out) produce a black screen showing

only the number. The graphics mode is left when all structures of a sequence are

shown, or when the <return> key is pressed. The main menu will be entered

afterwards. (See Section 5.3 for further possibilities in the graphics mode.)

f Analyze the actual structure [Main menu]

Several analysis options can be applied to the structure which is present in the

memory. Most of them write their results directly in �les, formatted for further

treatment by statistical analysis programs like SAS or by other modelling or

display software. Only the �rst two options indicated in the submenu, named

\elementary analysis" and \pathlength analysis", o�er also the possibility to write

their results directly to the screen.

Among the analysis options, there are also the data interfaces to the software

systems GROBOL (stem analysis) and 3dCLIP (grid with cubic cells), which will

be discussed in further detail in Section 5.5.

elementary analysis <A> [Analyze the actual structure]

This analysis option provides some fundamental data about all the structures

of the developmental sequence, e.g. numbers of elementary units (shoots), length

and volume sums, average branching angles. After activation of the menu item,

GROGRA will ask for the output device (Screen <B>, printer <P>, or �le <F>).

If the �le option is selected, a �lename has to be speci�ed later. The �lename

will be automatically completed by the su�x .txt.

If a pbg-structure, or a pbg- and an sbg-structure, are present in the memory (see

Section 5.5, p. 119), after the output device - menu there will appear another

submenu entitled \What shall be analyzed?" and giving the choice between \The

unmodi�ed structure <A>", \The �rst modi�ed structure <B>" and, if an sbg-

structure is present, \The last modi�ed structure <C>" (cf. the menu item \Show

the actual structure graphically" above). The �rst option refers to the standard



5.2. MENU ITEMS 99

developmental sequence, the second one to the pbg-structure, and the third one

to the last sbg-structure created.

For larger structures, the elementary analysis can take considerable time. Even-

tually, there will appear the heading \Basic data", and for each structure the

lines

Number of shoots

No. of terminal shoots

aver. no. daughter sh. of nt-sh. (= average number of daughter shoots

of non-terminal shoots)

global sum of all shootlengths

sum of shoot volumes

sum of values of parameter N

maximal z coordinate (height)

max. extension in x direction

max. extension in y direction

max. radius projection xy-plane (= maximal radius of the projection of

the structure along the z-axis on the xy-plane)

average branching angle

average contraction factor

Most of these parameters are self-explanatory. The \average contraction factor"

is the mean value of the ratios `=`

m

, where ` is the length of an elementary

unit not prolonging the axis of its mother unit, and `

m

the length of the mother

unit. (Prolongation of an axis is assumed if both units have the same branching

order.) The \average branching angle" does also refer only to non-prolonging,

i.e. properly branching units.

The propagation to the next developmental step is done by <return>. For the

developmental steps 2, 3, etc., there will in addition be given the increment

relative to the preceding developmental step for each of the above parameters.

pathlength analysis <B> [Analyze the actual structure]

This option works only for the standard developmental sequence of structures,

not for pbg- or sbg-structures. The speci�cation of the output device is done like

in the \elementary analysis" above, the automatically attached �lename su�x

being \.pfa" here. If the output device is \�le", only the last developmental step

will be analyzed. (If the analysis of another step is desired, one can save the

structure to be analyzed as a single-step dta-�le and then load it from the �le.)

For each structure, a table with 5 columns will be given. Each line in the table

corresponds to an elementary unit.

Column 1: Number of the elementary unit.

Column 2: Diameter d

b

of the unit.

Column 3: Average length of all paths emerging from that unit and
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going to a terminal unit (= unit without daughters).

Column 4: Length of the longest path of that kind.

Column 5: Number of the terminal unit where the longest path ends.

It is possible to use the pfa-�les as input for SAS when further statistical analysis

of the pathlength - diameter - relation is of interest (cf. [84]).

Because the screen display is implemented only for test purposes in this case, a

table output with more lines than �tting on the screen will not be interrupted

automatically. To avoid a loss of information, use the printer or �le output

instead.

grid with cubic cells <C> [Analyze the actual structure]

This item as well as the next one, \grid with cubic cells, simpli�ed", represent the

data interface to the 3dCLIP radiation regime simulation software.

The whole three-dimensional space where the structures \grow" is divided into

cubic boxes, whose orientation and sidelength can be speci�ed by the user. For

each box (cell, voxel) of this discretizised space, several parameters concerning the

part of the structure lying in this box are calculated and written into a �le. The

details are explained in Section 5.5, p. 127, here only the steps to be performed

will be commented.

The cubic grid analysis is only applicable to one single structure out of the stan-

dard developmental sequence (not to pbg- or sbg-structures). Thus, the number

of the developmental step is to be speci�ed �rst. After the line

Doing analysis related to cubic grid. Please wait.

has appeared, several further speci�cations have to be made. First of all, an

orthonormal basis has to be given, describing the directions of the cell's edges.

This is done by the input of two vectors (coordinate by coordinate); the �rst of

them is taken as the �rst grid direction, whereas the second one (which must

not be a multiple of the �rst) is projected on the plane orthogonal to the �rst

vector. The resulting vector is the second grid direction, and the third direction

is determined by orthogonality to the �rst two directions.

The next speci�cation �xes the side length of the cells. Because the cells are

assumed to be cubes, only one length is to be given in here. (Note that the smaller

the value, the more cells will be generated and the larger the resulting data set

of the analysis, leading possibly to very large time-consuming calculations.)

Afterwards, a display

Saving grid-related data

will appear, and a �lename will be required. This name gets automatically the

extension .kub.

During the writing process, which can take considerable time, there will be com-

ments like
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. . . beginning to initialize box�le

preface of �le �nished.

Initialization complete.

For informations about the contents of the kub-�les, see Section 5.5, p. 127.

grid with cubic cells, simpli�ed <D> [Analyze the actual structure]

The steps to be carried out under this menu item are the same as under the

preceding item, \grid with cubic cells". Only the data set written to the kub-�le

is reduced, see Section 5.5, p. 127.

stem analysis <E> [Analyze the actual structure]

This item generates a �le for the further display and analysis with the software

GROBOL (growth of boles engine). All data collected here concern only the

\stem", i.e. the set of elementary units of a structure which have the branching

order 0. Only the standard developmental sequence is analyzed, no pbg- or sbg-

structure. The data for all structures of the sequence are written into one and

the same �le.

Immediately after the activation of the menu item, the �lename will be asked for.

It will be automatically complemented by the su�x .bol. After its speci�cation,

there will be a control line

Nullniveau: <number>

and then the message

Saving of stem data �nished, press <return> to continue.

See Section 5.5, p. 126, for a description of what the bol-�le contains.

numbers of daughter shoots <F> [Analyze the actual structure]

Under this menu item, a �le with special data meant for further analysis with

SAS can be produced. Only one single structure out of the standard develop-

mental sequence (no pbg- or sbg-structure) can be analyzed. The number of the

developmental step has to be speci�ed �rst. Then the line

ANALYSIS OF THE ACTUAL STRUCTURE: NUMBER OF DAUGHTER

SHOOTS

must appear, and a �lename will be requested. It gets automatically the su�x

.dat, thus indicating its purpose as data input for SAS. The end of the writing

process is indicated by the message

Analysis is �nished, press <return>.
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The produced dat-�le will contain a table with 9 columns and as much lines as

elementary units with non-negative branching order are present in the analyzed

structure. Each line of the table corresponds to an elementary unit (shoot). The

informations in the columns are the following:

Column 1: The number i of the elementary unit, encoded in the form

s< number >, where < number > has exactly 6 digits,

column 2: The length ` of the elementary unit,

column 3: The diameter d

b

of the unit,

column 4: The branching order b of the unit,

column 5: The age a of the unit, calculated as a = g

max

� g, where g

is the generative distance of the unit and g

max

the maximal generative

distance appearing in the structure which is analyzed,

column 6: The number of daughter units of the unit (including axis-

prolonging daughters),

column 7: The number of subapical daughter units of the unit, i.e.

daughter shoots with q-value less than 0.2 and branching order b+ 1

(non-prolonging),

column 8: The number ofmedial daughter units of the unit, i.e. daugh-

ter shoots with 0:2 � q < 0:8,

column 9: The number of basal daughter units of the unit, i.e. daugh-

ter shoots with q � 0:8.

Note that the values of the last three columns must not necessarily sum up to the

value of column 6, because there can be a daughter unit prolonging the axis of

the current unit (i.e. having the same branching order b). Elementary units with

negative branching order (e.g., the �ctitious basal shoots of dtd-read or hand-

speci�ed structures) are not analyzed and do not appear as lines in the table.

lengths and angles <G> [Analyze the actual structure]

The purposes and the steps to perform under this menu item are similar to those

of the preceding item, \numbers of daughter shoots" (see above). The �lename

su�x is also .dat here.

After the speci�cation of the �lename, GROGRA will ask for a \Cluster distance"

d

c

. This distance refers to an iterative algorithm which will be applied to each

elementary unit of the analyzed structure, and which has the purpose to collect

all daughter units of that unit lying su�ciently close together into a \cluster",

identi�able by a cluster index. The cluster index 0 is reserved for axis-prolonging

daughters, i.e. units having the same branching order as the unit considered. The

clusters of side branches are numbered by 1, 2, . . . according to the position of

the cluster at the elementary unit (the more basal the position, the higher the

number).

The clustering algorithm is performed for each elementary unit in the following

manner:
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Clustering algorithm

First, the absolute positions of all daughter unit basal points at the

unit at work are collected in an ordered list.

Then, the two entries in the list having the smallest distance from each

other are replaced by their mean value, if their distance is smaller than

d

c

.

This step is repeated until all mutual distances of entries are � d

c

.

At last, all daughter units with identical entries are conceived as be-

longing to the same cluster and get the same cluster index.

(See Section 5.5, Transformation for HYDRA (p. 119) for another application of

this clustering algorithm.)

The cluster index of a daughter unit is written into its x

b

variable. It represents a

discrete positional information, in contrast to the real-valued positional variable

q.

This information is used during the determination of two elementary units which

are searched for each unit during the analysis, called the \big brother" unit and

the \cousin" unit.

The big brother of an elementary unit is the axis-prolonging unit of its mother

unit, i.e. the daughter (or \son") of its mother which has the same branching

order than the mother (Fig. 28). It must not necessarily exist. If the unit is itself

axis-prolonging, it is its own big brother.

Fig. 28: Big brother (b) of unit u
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Fig. 29: Cousin (c) of unit u

The cousin of an elementary unit u is a unit with the same generative distance g

than u. When we call \main ancestor" of a unit that unit which is the �rst one

having a smaller branching order when iteratively mother units are considered,

the main ancestor of unit u must be the axis-prolonging daughter unit of the

main ancestor of the cousin c. Furthermore, the cluster where the branch bearing

u emerges must have the same cluster number than the cluster from which the

branch bearing c emerges (Fig. 29).

The cousin must not exist, and it is not necessarily uniquely determined. GRO-

GRA chooses everytimes the �rst cousin it �nds.

We can now explain the content of the table forming the dat-�le which is

produced during this analysis. The table has 13 columns, and each line corre-

sponds to an elementary unit, like in the preceding analysis option.

Column 1: The number i of the elementary unit, encoded in the form

s< number >, where < number > has exactly 6 digits,

column 2: The number i

m

of the mother unit, encoded in the form

m< number >, where < number > has exactly 6 digits,

column 3: The branching order b of the unit,

column 4: The age a of the unit (cf. the preceding option, \numbers

of daughter shoots"),

column 5: The cluster index x

b

, determined by the clustering algo-

rithm,
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column 6: The relative position q of the unit,

column 7: The absolute position of the unit at the mother unit, i.e.

q � `

m

(`

m

= length of mother unit),

column 8: The branching angle, i.e. the angle between the unit and

its mother unit,

column 9: The length ` of the unit,

column 10: The number of daughter clusters of the unit (except the

eventually existing axis-prolonging daughter),

column 11: The length of the big brother of the unit, if it exists; oth-

erwise: -1,

column 12: The length of a cousin of the unit, if one exists; otherwise:

-1,

column 13: The length `

m

of the mother unit (if it exists; otherwise:

-1).

During the analysis, there will be the comments

. . . labelling daughter shoots . . .

. . . analyzing . . .

shoot s000001

shoot s000002 etc.

The end of the writing process is indicated by

Analysis is �nished, press <return>.

w Service functions and explanations [Main menu]

Here, a submenu with 7 items, entitled \Explanations and Service", is evoked.

Explanation of the turtle commands <T> [Service functions and explanations]

A short overview of the turtle command language is given on three screen pages.

A detailed explanation of the same material is given in Section 4.1 of this manual

(page 50 �.).

Explanation of the expression syntax <E> [Service functions and explanations]

Some remarks about the construction of arithmetical expressions are given on

one screen page. A detailed explanation can be found in this manual in Section

4.4 (page 69 �.).

Explanation of the L-system syntax <L> [Service functions and explanations]

Some material about rules, conditions, variable declarations and the repetition

operator, including some examples, is given on 7 screen pages. More elaborated

explanations on these subjects can be found in the Sections 4.2 { 4.5 of this manual

(page 61 �.). One further screen page shows the actually implemented restrictions

on parameter name lengths, variable numbers, arities etc. It is important to check

these values when a new GROGRA version is to be applied.
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Change the colors <F> [Service functions and explanations]

When this item is activated, the user can choose between two possibilities: Coloured

(the default setting) and monochrome. However, the colour adjustment does only

have e�ect on structures which are generated afterwards, not on the display of

an already existing structure. Moreover, only the default value (p

g

) of the unit

colour will change to white, i.e. an explicit colour speci�cation by a P command

in the grammar �le will override the \monochrome" adjustment.

The colour change menu item is essentially a remnant of a former GROGRA

version where the explicit colour control with P commands was not yet imple-

mented.

Change the language <A> [Service functions and explanations]

The activation of this menu item works as a switch between English and German

text display. The default language for GROGRA is English. When the German

modus is switched on, all menu displays and other text output (except a few error

messages which do seldom occur) is given in German. To undo this change, the

same item is to be activated again.

Change the internal mode of memory <S> [Service functions and explanations]

This is a switch which toggles between \RAM mode" (the default setting) and

\HD mode", referring to the storage medium where GROGRA holds internally

the actually present developmental sequence of geometrical structures. (There is

no in
uence on the handling of the strings generated by the grammars; these are

saved in auxiliary �les on the hard disk in any case.) HD mode o�ers more place

for large structures, but RAM mode is generally quicker and allows all possible

analysis and transformation options, what is not the case for HD mode. (See

Section 5.4, page 108, for the restrictions inherent to HD mode.)

When the mode of memory is changed, the present sequence of structures will

be deleted. However, it is possible to write a sequence of structures to a dta-�le

in one mode and to read it again in the other mode (if there is enough space).

When on a PC the memory is not large enough for a structure, it can eventually

be generated in HD mode, saved in a dta-�le, and possibly later analyzed or

transformed on a workstation with more available RAM in RAM mode.

q Quit the program. [Main menu]

If there is a structure still present (independently of RAM- or HD-mode), GRO-

GRA will, before �nishing with deleting that structure, display a small submenu

Warning: The structure is not saved.

Delete structure <L>

Back to Main Menu <Z>.

(This submenu will not appear if saving to a dta-, dtb- or pbg-�le was done

before.) To leave GROGRA de�nitively, the �rst item, \Delete structure", is to
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be selected. If \Back to the Main Menu" is chosen, nothing will happen to the

structure, and the main menu is displayed again.

5.3 The graphical display

The graphical display of GROGRA is activated via the menu item \Show the

actual structure graphically" (see Section 5.2 above, page 96). In RAM mode, the

auxiliary unit variables x

b

, y

b

, x

t

, y

t

will for each unit be overwritten with the

coordinates of the unit's bottom and tip in the chosen projection plane. The area

to be seen on the screen is determined from the maximal and minimal values of

these coordinates. The diameters of the elementary units are shown in roughly

the same scale as the lengths.

The way a unit is shown on the screen is rather simple: According to its top

diameter d

t

, it is drawn as a line or as a �lled rectangle, the colour always being

speci�ed by the unit variable p. (If p is 0 or a multiple of 16, nothing is shown.)

Only if the unit is seen from a direction directly from above in the projection, it

is drawn as a �lled circle. (For choosing the direction of view, see Section 5.2, p.

97.)

During the graphical display, several single-key commands are available to

evoke special options, among them plotting, printing and zooming. All these

commands work only when graphical display is already entered.

<space> causes GROGRA to continue with showing the next developmental

step of the current structure sequence. If already the last structure is shown,

one will return to the main menu. | All steps of a developmental sequence

have the same scaling.

<return> stops the graphical display and causes GROGRA to return to the

main menu.

z (= zoom): After z is typed in, a rectangular part of the screen content can be

speci�ed with the mouse to be displayed in maximal magni�cation. This is

done by pressing the left mouse button �rst at the position of the lower left

corner, then at the position of the upper right corner of the rectangle which

is to be magni�ed. (If the selection is done in the wrong order, there will be

an error message at the screen bottom.) The zooming option can be used

iteratively by pressing again the z key and then choosing a rectangle once

more. | If a small part of a large structure is selected, it can cost some

time until the display has its �nal form after zooming, because the parts

lying \beyond the borders" of the screen take also time while drawing the

structure.

The scaling factor achieved by zooming is automatically maintained during

the next developmental steps when the <space> key (or the \c" key) is

pressed.
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e (= default expansion): This key serves as \undo" for the zooming, i.e. the

original scaling is re-established.

h (= HPGL-plot): For the currently shown developmental step, a �le is writ-

ten in HPG language, containing the plotter commands necessary to draw

the structure with a HPGL-compatible plotter. Before writing the �le, a

submenu will be shown where the paper format is to be speci�ed (DIN-A-4

or DIN-A-3). Furthermore, a �lename (which gets automatically the su�x

.hpg) and a pencil index for monochrome plotting are to be speci�ed. There

is also the possibility to plot in a polychrome manner by choosing the pen-

cil index 0. The actual pencil for each unit will then be determined by a

reduction modulo 8 of the colour index p of the unit.

p (= Postscript output): Analogously to the h command, a �le is written contain-

ing the graphical informations for the currently shown structure, but now in

Postscript language for the display on a Postscript-interpreting printer. A

paper format (DIN-A-4 or DIN-A-3) is to be selected and a �lename has to

be speci�ed, which gets automatically the su�x .ps. In the current GRO-

GRA version, the printing is monochrome. After writing the informations

to the �le, the same structure will appear on the screen again, and other

graphical display commands can be used.

d (= print): This key does only work when a NEC-P5 or compatible printer is

directly installed at the parallel lpt1 - printer port (PC version only) and

is ready to print. It will produce an immediate printer hardcopy of the

current screen content. This option is meant for rough test pictures; for

higher-quality copies, the Postscript output (command p) is recommended.

c (= cycle): When this key was pressed, GROGRA will automatically show

each developmental step for 1 second, then turn to the next step, and after

showing the last step begin with the �rst one again. This \movie" modus

is useful for demonstrations and for situations when the user is not willing

to press repeatedly the space key. The automatic propagation through the

sequence can be stopped at every moment by simply pressing <space>.

(Every other key will also do.)

5.4 RAM- and HD-mode

The internal mode of representing attributed geometrical structures can be changed

from the (default) RAM-mode to HD (hard disk) mode. This is done by activa-

tion of the corresponding item in the submenu \Service functions and explanations"

(see Section 5.2, p. 106). In HD-mode, the capacity for developmental sequences

of structures is only limited by the available space on the hard disk. However, in

HD-mode there are certain restrictions to the capabilities of GROGRA.
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When HD-mode is active, GROGRA writes new structures (whether constructed

from grammars or read from �les) into an auxiliary �le named vlstru.tem, which

will be located in the same subdirectory where GROGRA is working. When the

initialization of this �le fails, GROGRA will stop with the message

Bad mistake! File vlstru.tem could not

be opened. Program halted. Press <return>.

In the �le, the elementary units will be represented sequentially, each one by the

variables

i (identi�er)

i

m

(mother unit identi�er)

` (length)

d

b

(basis diameter)

d

t

(top diameter)

n (leaf parameter)

p (colour index)

b (branching order)

g (generative distance)

q (relative position)

P (basis position vector)

Q (top position vector)

H (head direction vector)

L (left direction vector)

U (upward direction vector)

(in this order). The representation is not in ASCII code, but in a machine-

dependent, more compact encoding. The single units are separated by a marker

consisting of one character, namely, \a" in the interior of a structure description,

\n" when a new structure begins, and \e" at the end of the �le.

It is to be emphasized that the variables c, x

b

, y

b

, x

t

and y

t

are not existing in

HD mode.

The following GROGRA functions do not work in HD mode:

� The generation of structures from sensitive grammars,

� the input of data in HYDRA format (pbg, sbg, bag or map),

� the transformation and output of data for HYDRA,

� the transformation of the unit variables n,

� the analysis options except the stem analysis. That is, the interface to

3dCLIP (cubic grid analysis) is also not operating in HD mode,

� the J speci�cation in the dtd �le format (see page 115),
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� the method calls M2 and M3 (see Section 4.6, page 74).

Generally, working with structures in HD mode will take more time than in

RAM mode because of the necessary �le access operations. This is also true for

the graphical display.

5.5 Interfaces and data formats

All external data which GROGRA reads or writes are encoded with the standard

ASCII character set.

The di�erent data formats which GROGRA handles can be distinguished by the

extensions of the �lenames which are used. We exclude the Postscript and HPGL

formats (�lename su�xes .ps and .hpg) from this discussion; consult a Postscript

or HPGL manual for informations concerning these graphics languages. Also,

the tables created by certain analysis options in .dat- or .pfa-�les will be excluded

from this Section because they were already explained in Section 5.2, menu item

\Analyze the actual structure" (p. 99; 101 �.). The input format for the growth

grammars (.lsy- and .ssy-�les) is explained in Chapter 4.

Standard format (�lename su�x .dta)

This is the format normally used by GROGRA to save a complete developmental

sequence of attributed geometrical structures in a �le. It can also be used to save

single structures (see Section 5.2, p. 92).

The structures of a developmental sequence are written sequentially into the �le;

each new structure is announced by an extra line with the single letter \n" in

its leftmost position. The end of the �le is marked by the letter \e". For each

structure, the elementary units are again listed sequentially in the order how they

are linked by their s references (or, in HD mode, how they are arranged in the

�le vlstru.tem). The variable set for each unit takes three lines in the �le and is

announced by an upper case \S" at the beginning of the �rst line:

S i i

m

` d

b

d

t

n p b g q

p

x

p

y

p

z

q

x

q

y

q

z

h

x

h

y

h

z

l

x

l

y

l

z

u

x

u

y

u

z

The numerical values are separated by blanks. i

m

denotes the identi�er index of

the mother unit. It is arti�cially set to -5 in the case when no mother unit exists.

See Section 5.1, p. 79, for the explanation of the other variables.

Note that the elementary unit variables c, x

b

, y

b

, x

t

and y

t

are not saved in the

dta-format.
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Exchange format for AUTOCAD (�lename su�x .dtb)

The data written in dtb-format can serve as input for the AUTOLISP inter-

preter of the commercial CAD software AUTOCAD (see [3]) to produce simple

wireframe-models of single structures (see Fig. 30).

Fig. 30: A wireframe model of a structure

made with the help of the interface to AUTOCAD

Only a restricted data set for each elementary unit is saved in this format. Fur-

thermore, before saving takes place, a rewriting is applied to all prolonging units

(i.e. daughter units with the same branching order as their mother unit): The
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bottom diameters d

b

are adapted to the values of the top diameters d

t

of the

mother units. This transformation ensures a smoother connection of the units in

the AUTOCAD display (Fig. 31).

�

�

�

�

�

�

D

D

D

D

D

D

�

�

�

�

E

E

E

E

-

Fig. 31: Adaptation of diameters d

b

preceding the saving in dtb format

The data format itself is rather simple. Only one developmental step is saved in

a dtb-�le. Each elementary unit corresponds to one line in the form

(((p

x

p

y

p

z

) d

b

) ((q

x

q

y

q

z

) d

t

))

where P = (p

x

; p

y

; p

z

) is the bottom and Q = (q

x

; q

y

; q

z

) the top position of the

unit (cf. Section 5.1, p. 79). Files in dtb-format can also be read by GROGRA

(see Section 5.2, p. 88).

Descriptive format (�lename su�x .dtd)

This data format is used for reading only. It is meant for morphological de-

scriptions coming from measurements at living branches or branch parts of trees

(especially conifers). A dtd-�le speci�es one structure, no development is in-

cluded. A labelling of the growth units (shoots) | not necessarily with numbers

| is presupposed, such that the topological structure of a branching system can

be reconstructed. Shootlengths are also obligatory, whereas the speci�cation of

diameters is optional (GROGRA asks for a default diameter for those units whose

diameter was left unspeci�ed before reading a dtd-�le). Each shoot corresponds to

an elementary unit and is described by a single line in the dtd-�le. The order how

the lines are arranged is only restricted by the requirement that the description
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of a mother shoot must come before those of its daughter shoots. If the option

\buds are to be included" is chosen (see Section 5.2, p. 89), GROGRA constructs

extra elementary units for lines containing a \K" in the dtd-�le, describing buds

(even in the case when the speci�ed length is 0). If this option is neglected, lines

containing a \K" are ignored.

Fig. 32: Syntax of a shoot description line in a dtd �le

The syntax of a single line of a dtd-�le is given by the syntax diagram in Fig.

32. \Optional letter" is here one of the letters A, G, J , M , N , O, P , R, S, W ,

X. Instead of upper case letters, lower case letters are permitted as well (also

for L and D), but have a slightly di�erent meaning (see below). \string" means

a string of arbitrary characters not containing # or blanks, \text" may contain



114 REFERENCE GUIDE

blanks, but no g or > character, and \number" refers to decimal numbers in the

usual 
oating point representations. (After G, J , O and R, only integers are

allowed.)

The meanings of the di�erent elements constituting a line | and thus a shoot

description | are explained in the following table.

Leading string (without preceding extra letter): The unique identi�er of the

shoot. It can be a number, a word or a combination of letters, digits and

extra symbols. GROGRA translates the identi�ers into numbers according

to an internal list which is created and actualized during reading a dtd-�le.

L The number immediately following the letter L is the length of the shoot,

usually measured in mm.

# The string immediately following this character is the identi�er of the mother

shoot. It must be identical to an identi�er appearing in some line before as

the leading string. The only exception: When the # character is followed

directly by another #, the shoot is handled as having no mother shoot.

(The position of its origin is then assumed to be (0; 0; 0).)

A The number immediately following the letter A is interpreted as the distance

between the basis of the mother shoot and the basis of the shoot itself, i.e.

its absolute position at the mother shoot axis, measured from the basis (in

the same length unit as L). Usually, this will be a number between 0 and

the length of the mother shoot.

If the speci�cation by A is missing, the position will automatically be as-

sumed to be the length of the mother shoot, i.e. the shoot will emerge at

the extreme top of its mother shoot.

The q-value of the created elementary unit is also determined from this

speci�cation.

W The number immediately following the letterW is interpreted as the branch-

ing angle in degrees between the shoot and its mother shoot. When the

W speci�cation is omitted, this value is set 0, i.e. the shoot has the same

direction as its mother shoot in that case.

S The number immediately following the letter S is interpreted as an azimuth in

degrees, i.e. as the angle between the projection of the shoot on the plane

orthogonal to the mother shoot axis and the U -vector of the mother shoot.

An S speci�cation has no e�ect when the branching angle is 0. If no S, R,

+ or � appears in the line, the azimuth is assumed to be 90

�

.

R The integer immediately following the letter R is interpreted as a short form

of azimuth speci�cation, replacing the S option. The R speci�cation is

translated as: 1 = 0

�

, 2 = 45

�

, 3 = 90

�

, 4 = 135

�

, 5 = 180

�

, 6 = 225

�

,

7 = 270

�

, 8 = 315

�

(i.e. S = (R � 1) � 45

�

). R3 corresponds normally to a

direction to the right of the mother shoot, R7 to the left, and R1 upwards
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(see Fig. 33 for an illustration of the R-directions. The mother shoot has

to be thought to go through the centre of the picture.)
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Fig. 33: Azimuth speci�cation by R (inner numbers)

and S (outer numbers)

+ The single symbol + (enclosed by blanks) is equivalent to S90 or R3. It

speci�es normally a direction to the right of the mother branch.

� This is equivalent to S270 or R7 and speci�es normally a direction to the left

of the mother branch.

O The integer following the letter O is interpreted as the branching order of the

shoot. If there is no O or V in the line, the order is determined automati-

cally: If the branching angle is greater than 0, or if an azimuth was speci�ed,

the order is the order of the mother shoot increased by 1, otherwise it is the

order of the mother shoot.

V The single letter V (enclosed by blanks) enforces the branching order of the

shoot to assume the value of the branching order of the mother shoot.

(Prolonging shoot)

G The integer following the letter G is interpreted as the generative distance

of the shoot (cf. Section 5.1, p. 79). If no G or J appears in the line,

the generative distance is determined from that of the mother shoot by

increasing it by 1.

J The integer following J is interpreted as the \age" of the shoot. The generative

distance g is calculated from this age by the formula g = j

max

�j+1, where

j

max

is the maximal age appearing in the dtd-�le. (This way of specifying g

does not work in HD-mode.)
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N The number immediately following the letter N is directly taken as the para-

meter n of the corresponding elementary unit. It can stand for the needle

surface of the shoot, or for needle dry weight. If no N appears, the default

is 0.

K The single letter K (enclosed by blanks) speci�es the shoot to be a \bud"

and eventually to be omitted if the user wants so (see above).

(Dnumber number : : : Dnumber number) The numbers immediately following

the letters D are diameter values, the numbers following them are the po-

sitions at the shoot where they are measured, relative to the basis of the

shoot. (Hence these numbers should lie between 0 and the length of the

shoot.) The positions are assumed to appear in ascending order. In the

current GROGRA version, only the �rst and the last D-speci�cation in the

list are really interpreted, namely, as d

b

and d

t

. (If only one number pair,

e.g. (D2:5 0), is given, GROGRA identi�es d

b

and d

t

both with the same

value, here 2.5.) If no D-list appears in the line, GROGRA will assume for

d

b

and d

t

the user-speci�ed default value which is asked for before a dtd-�le

is read.

ftextg or < text >: comment, which is not interpreted.

M , P , X: These letters, followed by numbers, are reserved for speci�cations

which are not interpreted by the current GROGRA version. (M stands for

total dry weight of the shoot, P for pure shoot dry weight (excluding the

needles), X for the exposition (point of the compass) relative to the stem.)

If lower case letters instead of upper case letters are used in a dtd-�le, the cor-

responding number is meant to be an estimation rather than a measured value.

However, GROGRA makes in its current version no di�erence between upper and

lower case letters in dtd-�les.

The colour of an elementary unit read from a dtd-�le is light green. Its L direction

is determined di�erently in two cases:

Case 1. If the order of the shoot is 0 or 1, L is orthogonal to the vertical direction

(and, naturally, to H). This implies that U points \as steeply as possible"

upwards, like in the case of explicit construction by hand (cf. Section 5.2,

p. 83). If the H direction is already the vertical, the above description does

not specify L uniquely. In that case, L will be (0; �1; 0).

Case 2. If the order is greater than 1, L lies in the plane which is spanned up by

H and the head direction H

m

of the mother shoot. Furthermore, the signs

of L and U are chosen in a way that U di�ers by no more than 90

�

from

U

m

. (If H = H

m

, it will be assumed L = L

m

and U = U

m

.)

(This convention will possibly be changed in a later GROGRA version because

it can lead to some inconsistencies.)
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The structure generated from a dtd-�le will have at its basis a �ctive elementary

unit of colour 0 (= invisible), order -1, length 0 and directions H = (0; 0; 1),

L = (0; �1; 0), U = (1; 0; 0). This unit yields the reference direction as mother

shoot for the shoots speci�ed in the dtd-�le by \##" as having \no mother

shoot".

Table 3 shows an example of a dtd-�le content, and Fig. 34 the corresponding

structure.

Table 3: Example of a dtd �le content

65-1 L108 ## O1 R1 W90 (D4.0 0 D3.3 20 D2.8 63 D2.6 93)

65-2 L81 #65-1 V (D2.7 0 D2.3 40 D2.0 68)

65-3 L100 #65-2 V + W25 (D1.8 0 D1.6 86)

65-4 L0 #65-1 A68 � K

65-5 L22 #65-1 A86 � W70

65-6 L48 #65-1 A98 � W45 (D1.6 0)

65-7 L41 #65-6 V

65-8 L18 #65-2 A45 � W70 f befallen g

65-9 L0 #65-2 A62 � K

65-10 L60 #65-2 A73 � W55 (D1.4 0)

65-11 L0 #65-3 A91 � K

65-12 L40 #65-2 A75 + W50 f verkr�ummt g

65-13 L0 #65-2 A60 + K

65-14 L67 #65-1 A101 + W50 (D1.7 0)

65-15 L54 #65-14 V

65-16 L0 #65-15 A49 � K

65-17 L32 #65-14 A62 + W55

65-18 L27 #65-1 A81 + W65
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Fig. 34: Graphical visualization of the structure de�ned

by the dtd speci�cation of Table 3 (with shoot labels)
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The transformation for HYDRA

This transformation process, ending with �les with su�xes .pbg or .sbg (see p.

125 �. below), is designed for making GROGRA structures usable by the soft-

ware systems DISC and HYDRA, the latter simulating the tree-internal water

transport.

Detailed informations on DISC and HYDRA, including the theoretical back-

ground, will be found in [41]. Notions like \leaf speci�c conductivity", \soil index"

or \criterion distance", which will be occasionally used in the subsequent remarks,

will also be de�ned there.

The transformation is started by selecting the menu item \Transform and save for

HYDRA" (see Section 5.2, p. 92, for the steps to perform). Only one structure out

of a developmental sequence can be transformed. Before the transformation is

started, it should be ensured that the n-variables of this structure have generally

positive values, at least at the terminal (i.e. daughter-less) units. Because the

transformation makes use of leaf-speci�c conductivities and thereby of accumu-

lated needle surfaces, it makes no sense to apply it to a lea
ess tree, and this

would cause error messages.

The leaf-speci�c conductivity (LSC) of an elementary unit is calculated according

to the formula

LSC = c � d




b

=n

a

;

where n

a

is the accumulated needle surface area (the sum of all needle surfaces

of the units contained in the branching system emerging from the current unit,

plus half the needle surface of that unit itself), and c and 
 are constants which

depend on the tree species. If a pbg-structure is read from a �le (see Section 5.2,

p. 88), the tree species is asked from the user. When a new pbg- or sbg-structure

is constructed, GROGRA in its current version assumes Picea abies to be the

tree species.

The transformation of a structure into a pbg-structure consists of the following

steps (cf. Fig. 35):

1. Creation of forward references in the old structure

The elementary unit variable c is used to link each unit with its axis-prolonging

daughter unit (daughter unit with the same branching order b), such that after-

wards each axis can be followed upwards by using the pointers c.

Note that the correct execution of this step requires that the branching orders in

the structure are correct. Especially, the axes must be distinguishable by equal

branching orders of their constituents, otherwise they cannot be identi�ed by

GROGRA. Possible sources of errors concerning the branching orders are the

bracketing in the grammars or the O- and V-speci�cations in a dtd-�le.
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2. Creation of a copy with back references

A copy of the original structure is made. The c variables of the units of this copy

point each to the corresponding original unit. (Hence, in the copied structure

there are no forward references.)

3. Reorganization of the copy, forming the axis structure

Each axis in the copied structure (an axis consisting of successive units with

the same branching order b) is melted into one elementary unit representing the

whole axis. The new length is the sum of the lengths of the constituting units,

the direction is that of the basal unit of the axis. Daughter axes will be translated

such that their origin maintains contact with the mother axis, and q-values will

be transformed consequently. The resulting structure will be hold in the memory

during the following transformation steps. We speak of the axis structure.

The c pointer of each unit in the axis structure refers to the basal unit of its

corresponding axis in the original structure. By using the forward references in

the original structure, it is possible to �nd for each position on an axis of the

axis structure the corresponding unit in the original structure. This possibility

will be used in the following when local diameters or local leaf area densities are

needed in the axis structure.

The number of units of the axis structure (number of axes) is displayed on the

screen and written to the protocol �le standard.gpr. It is usually much smaller

than the number of original shoots (units).

4. Creation of a copy of the axis structure (the later pbg-structure)

The c references of the new copy are also copied from the axis structure, i.e. they

point to the original structure. The c references of the old axis structure, however,

are now replaced by forward references to the corresponding copied axes.

5. Dissection of each axis of the copied axis structure (creation of the primary

base grid pbg)

Each axis is now splitted at each branching node. (However, the length of a unit

is bounded to be not smaller than a minimal distance which is 1 length unit in the

current implementation.) The diameter- and n-values for the resulting axis parts

are determined by referring to the original structure via the c references. (The

middle position of the axis part is used here as the position which is searched in

the original structure to get the local values of d and n=`.)

The resulting structure will be referred to as the primary base grid structure (pbg-

structure). It is distinguished by the property that all q-values (relative branching

positions) in it are 0, and that each unit ends either in a branching node or in

a branch tip. Mathematically, the units of the pbg-structure form the arcs of a

(directed, rooted) tree in the sense of graph theory, with the further restriction

that no vertices (nodes) with degree 2 exist in that tree.
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6. Relabelling of the pbg units

The index variables i of the units of the pbg-structure are now overwritten; the

new numbering being arranged in reverse depth-�rst order. The basal unit will

have the highest index; to the periphery, the indices are monotonically decreasing.

Among all daughter units of a unit, the axis-prolonging unit (if one exists) gets

the lowest index.

7. Calculation of LSC values and of statistical data in the pbg-structure

The LSC values are written in the x

b

-variables of the units of the pbg-structure,

the `=LSC-ratios (length expressed in meters here) in the y

b

-variables. For the

`=LSC-ratios, a ranking is carried out and certain percentiles are determined,

which are later on displayed and written into the head of the pbg-�le. (It should

be remarked that the g-variables of the pbg-units are overwritten during this

ranking, such that the generative distance of a unit cannot be read from a pbg-

structure. However, this notion has no sense in a pbg-structure anyhow, because

the dissection into elementary units is no longer botanically motivated.)

8. Writing of the pbg-�le

For the �le format, see p. 125 below. Interwoven with the writing process, some

further statistical analysis will be carried out, concerning sizes of proper whorls.

(This analysis overwrites again the g-variables in the pbg-structure.) A proper

whorl is one consisting of at least one daughter unit. The mean proper whorl size

is the average number of daughter units of all nonterminal units (cf. \elementary

analysis", Section 5.2, p. 98).

The number of segments (units) of the pbg-structure will be protocolled on the

screen and in the protocol �le.

9. Creation of forward references in the pbg-structure

Like in step 1 (see above), the c references will now be used to connect the

segments forming axes in the pbg-structure. In the following phases, the pbg-

structure will completely replace the original structure in its function as a basic

reference for local diameters and leaf area densities.

After this step has been executed, the control will return to the user; the

menu \Further transformation of the structure" will appear (see Section 5.2, p. 93).

When the user decides to go back to the main menu, the axis structure and the

pbg-structure remain in the memory as well as the original structure, and the pbg-

structure can be watched in the graphical display. When afterwards the menu

item \Transform existing pbg structure" is activated (p. 94), only a part of step 7

(calculation of LSC values) will be repeated. However, when a pbg-structure is

read from a �le, there is no axis structure present, and steps 1{3 and 7 have to

be done before the menu \Further transformation. . . " is entered.
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When the user decides in this menu to create an sbg-structure and has speci�ed

a creation factor f

c

and a tolerance factor f

t

(minimal ratio length / criterion

distance), the following steps will be executed:

10. Creation of a new copy of the axis structure (the later sbg-structure)

In this step, a possibly present sbg-structure from a former transformation will

be overwritten in the memory.

11. Dissection of each axis of the copied axis structure, taking account of the

local minimal distance (creation of the secondary base grid sbg)

This step is analogous to step 5 above, but before splitting an axis, a list of the

daughter axis origins at this axis will be created, and the clustering algorithm

(which was formerly mentioned in the context of analyzing a structure, p. 103)

will be applied to that list. The minimal cluster distance is determined locally as

f

t

� f

c

� LSC

`

;

where LSC

`

is the LSC value of the locally corresponding segment of the pbg-

structure, which is obtainable via cross-referencing to the pbg-structure and

forward-referencing in the pbg-structure, all by the c pointers.

The daughter axes collected in one cluster will be translated such that they get

a common origin (which was determined as the cluster position by the clustering

algorithm). Hence, no segment between two branch nodes (or between a branch

node and the end of an axis, which is considered equivalently as a branch node

by the clustering algorithm in this case) will be shorter than the above-expressed

local minimal distance. These segments become the units of the sbg-structure

after splitting.

If a complete axis A is shorter than the local minimal distance d

min

at its origin,

three cases have to be distinguished (let ` be the length of A):

(i) A has no daughters and ` < d

min

=2.

The axis A will be completely eliminated in the sbg-structure.

(ii) A has no daughters and d

min

=2 � ` < d

min

.

The axis A will be in
ated to the length d

min

. Other variables except the

length and the end position will not be changed.

(iii) A has itself daughter axes.

In this case, A (as a \structural axis") will remain unchanged, despite of

its too short length.

All three cases are protocolled and counted.
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The structure resulting from this step will be referred to as the secondary base

grid structure (sbg-structure), because it is derived from the pbg-structure. In

general, it will be topologically di�erent from the pbg-structure: Branching nodes

have been melted; possibly even some axes are lost (case (i) above).

The following steps resemble the steps 6{8:

12. Relabelling of the sbg units

(Again, the indices i will be arranged in reverse depth-�rst order, following the

same restriction for the prolonging segments as described in step 6 above.)

13. Calculation of LSC values and of statistical data concerning the pbg- and

sbg-structure

14. Writing of the sbg-�le.

Afterwards, another sbg-structure with other f

c

and f

t

values can be created,

starting with step 10 again and using the same pbg-structure. The whole trans-

formation process with all 14 steps is visualized in Fig. 35.
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Fig. 35: The transformation steps of the interface to HYDRA
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pbg format (�lename su�x .pbg)

A pbg-�le consists of two parts, a head and a main part. The head contains

general informations about the structure, whereas the main part consists of lines

each of which describes a segment (elementary unit) of the pbg-structure.

The head has the following format:

(1 empty line)

�lename, generated by GROGRA, date and time

(4 empty lines)

|||||||||||||||||||||||||||||

Areas obtained independently from length

Length/LSC Mean:. . . Mean abs. dev.:. . . Std. dev.: . . .

Proper whorl sizes Mean:. . . Mean abs. dev.:. . . Std. dev.: . . .

|||||||||||||||||||||||||||||

Ratio smaller than 50 percent of all ratios: . . .

Ratio smaller than 80 percent of all ratios: . . .

Ratio smaller than 90 percent of all ratios: . . .

Ratio smaller than 95 percent of all ratios: . . .

Smallest ratio: . . .

|||||||||||||||||||||||||||||

(4 empty lines)

KARTE: �lename SI: . . .

|||||||||||||||||||||||||||||

d

The term \ratio" refers to length / LSC, \Mean abs. dev." means \mean absolute

deviation", and \Std. dev." means \standard deviation". \SI" stands for \soil

index" and denotes the number of segments (units) of the structure, including 3

arti�cial segments added at the basis, which are also included in the main part

of the �le.

A line of the main part has the format

i = i

d

1

i

d

2

� � � i

d

k

0 = � i

m

` d

b

n

i is the unit identi�er (i.e. an integer between 1 and the soil index), i

d

1

� � � i

d

k

the

list of daughter unit identi�ers in ascending order, i

m

the mother unit identi�er.

i

m

gets a negative sign if the unit is not axis-prolonging. (i

m

= 0 for the basis

unit.) ` is the length (in m), d

b

the diameter (in cm) and n the needle surface

(in m

2

) of the unit. The entries are separated by blanks.

sbg format (�lename su�x .sbg)

This format is similar to the pbg-format. Some informations refer to the \source",

i.e. to the pbg-structure from which the sbg-structure was obtained. The head is

formatted as follows:
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(1 empty line)

�lename, related source pbg-�lename, date and time

(4 empty lines)

|||||||||||||||||||||||||||||

Ratio used as creation factor: f

c

Tolerance factor: f

t

Areas obtained independently from length

Total length PBG: . . . m SBG: . . . m

Length change (PBG-SBG)/PBG: . . .

Manipulations: Translat. . . . , in
at. . . . , elim. . . .

Proper whorl sizes Mean:. . . Mean abs. dev.:. . . Std. dev.: . . .

|||||||||||||||||||||||||||||

SBG jLength-CDj/CD Mean:. . . Mean abs. dev.:. . . Std. dev.: . . .

|||||||||||||||||||||||||||||

(4 empty lines)

KARTE: �lename SI: . . .

|||||||||||||||||||||||||||||

d

\Total length" refers to the sum of all segment lengths, \CD" stands for \criterion

distance". \Translations", \in
ations" and \eliminations" mean the di�erent

axis manipulations done during sbg creation which are counted. A translation

occurs for each daughter axis which is translated into a cluster center, whereas

\in
ations" and \eliminations" refer to the cases (ii) and (i) of short axis handling

(p. 122). The other abbreviations are the same as in the pbg format.

A line of the main part has the same format as in a pbg-�le (see above) with the

exception that in all lines (except the last 3, arti�cially added lines) the criterion

distance (in m) is appended as an additional entry. The \criterion distance" is

obtained as LSC � f

c

for all units of the sbg-structure.

Stem analysis format (�lename su�x .bol) and interface to GROBOL

The stem analysis is started via the corresponding item in the \Analyze the actual

structure"-submenu (see p. 101). It takes all developmental steps into account,

but gathers only informations about stem units, i.e. units with branching order

0. It is assumed that these units form a single, connected axis.

The results are written to a bol-�le, consisting of several lines, each of which

having the format

t h r

h

t is an integer, the number of the developmental step. h and r

h

are real numbers

given in exponential notation (and measured in the same length unit, usually in

mm). h is the height where the stem radius r

h

is determined. For each �xed t, h

will ascend from 0 to the height of the highest stem unit tip, thus giving several
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lines in the �le. A possible non-zero z-coordinate of the bottom position P of the

basal unit (\null niveau") will be subtracted automatically from all h values.

r

h

is determined at the stem basis (h = 0), at the stem tip (r

h

= 0) and at the

middle position of each elementary unit.

Files in bol-format can be read by the program GROBOL written by D.

Lanwert. This software o�ers several possibilities to show and animate the

interpolated stem form from di�erent points of view and with magni�ed radial

extension. Moreover, the stem shape can be compared with empirically obtained

stem data. GROBOL is also able to write lsy-�les | e.g. from measured tree

boles | which can again be interpreted by GROGRA in the usual manner.

GROBOL runs on the Silicon Graphics workstation only.

Cubic grid analysis format (�lename su�x .kub) and interface to 3dCLIP

The data transfer to the 3D-climate and physiology-model (which is still in its

developmental phase) is done by kub-�les and refers to a grid consisting of cubic

cells which is laid over the whole structure. The side length of the cells (grid res-

olution) and the orientation of the main directions of the grid are to be speci�ed

by the user after the menu item \grid with cubic cells" or \grid with cubic cells,

simpli�ed" is activated (see Section 5.2, p. 100). The orientation of the orthonor-

mal system determining the grid's main axes can be chosen arbitrarily (see Fig.

36 for an illustration in two dimensions).
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Fig. 36: Two possible orientations of the imposed grid

The cubic grid analysis sums up for each cell the lengths, volumes, needle surface

areas (in the standard version splitted up into 8 age classes), and directions of all

elementary units whose middle axis overlaps with that cell (Fig. 37).
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Fig. 37: Intersections of structural units with a grid cell

Fig. 38: Four cells, denoted a, b, c, d, and an elementary

unit divided into parts making contributions to di�erent cells
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However, the overlapping parts of the elementary unit axes are not determined

by analytical calculation of intersection points, but are approximated with the

help of an equidistant discretization of each elementary unit. An elementary unit

middle axis is divided into parts with equal length �` which is of the magnitude

s=10, s being the sidelength of the cells. Each part with length �` contributes

its volume, needle area etc. to that cell to which its left endpoint belongs (Fig.

38).

Note that the diameter of the elementary unit is not taken into account by this

algorithm. Hence, cell a will get no contribution from the unit shown in Fig. 38,

despite of its non-empty intersection with that unit.

A �le of the format kub consists of a head and a main part, the head con-

taining general informations about the grid and the main part consisting of lines

each of which describes a cell of the grid. The order how the cell descriptions are

arranged is given by the reciprocal lexicographic order of their midpoint coor-

dinate triplets in the orthonormal coordinate system de�ning the grid (i.e., �rst

the x-coordinate in the grid is increased step by step, then the y-coordinate, then

the z-coordinate; see Fig. 39). All cells in a rectangular part of space are listed,

including empty ones.
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Fig. 39: Enumeration of cubic cells

The head of a kub-�le consists of two lines containing the following numbers,

separated from each other by one or more blanks:
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k

t

k

x

k

y

k

z

s L

x

L

y

L

z

o

x

o

y

o

z

a

x

a

y

a

z

b

x

b

y

b

z

c

x

c

y

c

z

m

x

m

y

Our abbreviations have the following meanings:

k

t

total number of all cells (k

t

= k

x

� k

y

� k

z

)

k

x

number of cells along the x-direction of the grid (analogously k

y

, k

z

)

s side length of a cell (the same side length in each of the three directions,

because the cell is indeed a cube)

L

x

= s � k

x

, total extension of the grid in x-direction (analogously L

y

, L

z

)

o

x

x-coordinate of the origin of the grid in the old coordinate system used for

describing the structure (\world coordinates"). All cells lie in the �rst (i.e.

positive) octant of the new (grid) coordinate system. (Analogously o

y

, o

z

.)

a

x

x-coordinate of the �rst basis vector of the grid (x-direction of the grid

orthonormal system). Analogously: a

y

, a

z

and the coordinate triplets of

the second and third basis vectors b, c.

m

x

, m

y

coordinates (in the world coordinate system) of a \central axis" of the

analyzed structure, automatically assumed to be parallel to the z-axis. The

axis is determined by the bottom position of the basal stem unit. Exposition

angles will refer to this axis.

The entries in a line of the main part of a kub-�le (standard version) are the

following (again separated by blanks):

�

x

�

y

�

z

V v n

0

n

1

n

2

n

3

n

4

n

5

n

6

n

7

d

x

d

y

d

z

` 


Here, (�

x

; �

y

; �

z

) is the coordinate triplet (in world coordinates) of the midpoint

of the cell which is described in that line. V means just the upper case letter V

(a marker), whereas v is the summed volume of all unit parts in the cell. n

a

is

the sum of all areas of needle surfaces (i.e., n-values) of age a, the age of a unit

being determined as a = g

max

� g, where g is the generative distance of a unit.

(n

7

collects all areas of needles of age � 7.) Age 0 refers to the youngest needles,

etc.

(d

x

; d

y

; d

z

) is a vector which is calculated as the sum of all directions of elemen-

tary unit parts falling in the described cell. It is something like a \weighted mean

direction" of all shoots in that cell. In the case of an empty cell, all three values

will be 0.

` is the length sum of all unit parts ascribed to the cell, and 
 is the exposition

angle of the cell midpoint with respect to the above-mentioned \central axis",

i.e. an angle in cylinder coordinates, given in degrees. More exactly, it is the

angle between the vectors (�

x

�m

x

; �

y

�m

y

) and (1; 0) in the xy-plane (world

coordinates).
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In the simpli�ed version (menu item \grid with cubic cells, simpli�ed"), the head

of the kub-�le will be the same, whereas the line format of the main part is now

�

x

�

y

�

z

V v n ` 


where n collects the needle surface areas of all age classes.

5.6 An overview of the modular program struc-

ture

The source code of GROGRA is currently distributed on 14 program modules,

specialized on di�erent tasks.

spezial.c mutual emulation of PC-/SGI-speci�c functions

mouse.c mouse control

drucker.c printer control

mmen.c menu display and �le selection

vekt3.c linear algebra in IR

3

and some functions

concerning cubic cell grids

zufall.c random variable generation and distributions

lverzw.c initialization, writing, and I/O of elementary units

and branching structures

lgraph.c graphical display of structures

lmayer.c structure generation from grammar �les

lmethod.c functions and methods called in grammars

ltrans.c transformation for HYDRA

lanaly.c analysis of structures, including stem analysis

(interface to GROBOL) and cubic grid analysis

(interface to 3dCLIP)

linter.c reading and saving of structures

(including dtd parsing)

lgrogra.c menu structure of the program, explanation part,

main initialization and control of grammar

interpretation

Furthermore, the �le lexpla.msg, containing text to be displayed in the explanation

part, is part of GROGRA.

The microcomputer-version was compiled in the memory model HUGE (cf. [15]).
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Chapter 6

Examples

The following examples shall indicate some possibilities of GROGRA, but do by

far not exhaust the range of potential applications. More elaborated examples,

designed for special purposes in forestry or ecosystem research, will be subject of

further publications and have not to be expected here in the context of a quite

general software documentation.

All example pictures were generated with the microcomputer version of GROGRA

2.4.

In all grammar listings, the lines are numbered. The numbering is only for ref-

erence purposes and does not appear in the �les. | In all cases, the start word

for the grammar application is �.

6.1 koch.lsy

The following non-sensitive, non-stochastic growth grammar generates the fractal

von Koch-curve.

1 nangle 60,

2 � # RU90 a F,

3 a # a L�0.333,

4 F # F � F + + F � F

The �rst, declarative line speci�es the angle for the + and � symbols. That is,

+ stands for RU60 and � for RU-60 in this L-system. The replacement process

begins with the rule in line 2, which is applied to the start symbol �. Note that

the initial direction of the turtle is \straight upward" (in z-direction), such that

the RU90-command is necessary to enforce a horizontal movement in the �rst

step. The structure generated from RU90 a F consists of just one horizontal

line (not shown here). To the string RU90 a F , the rules 3 and 4 are applied

in the next step. Fig. 40 shows the 6 next developmental steps in the graphical

display obtainable simply under the option \side view".

133
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Fig. 40: koch.lsy, steps 2{7
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6.2 mchange.lsy

This example demonstrates stochastic variation in its simplest form. The gram-

mar generates six \plants", arranged in a line, and each following the same sto-

chastic developmental rule.

1 � # P12 [ a ] &5 < RU90 f�3 RU-90 [ a ] >,

2 a # F [ RU60 b ] [ RU-60 b ] a ?0.9,

3 a # P1 L�0.5 a' ?0.1,

4 a' # F RH180 [ RU75 b' ] a',

5 b # P2 F,

6 b' # P14 F

Fig. 41: mchange.lsy, steps 6 and 12

Rule 1 sets the \seeds" for the six plants in a spacing corresponding to 3 times the

length of a growth unit (f �3). The repetition operator &5 iterates this spacing,

along with the necessary re-orientations of the turtle, 5 times.



136 CHAPTER 6. EXAMPLES

The plant, consisting of just one axis and short lateral shoots, has two

\growth modes", the �rst one symbolized by a and b, and the second one by a

0

and b

0

. Once the �rst (default) growth mode is left by an application of rule 3,

transforming a into a

0

, the plant will in the next step continue to grow in the

second growth mode and will never return to the �rst, i.e. rules 4 and 6 are then

applied, replacing rules 2 and 5. The two growth modes are distinguished by

di�erent lengths, branching angles, colours and phyllotactic arrangements (two

opposite side shoots in rule 2, alternating single side shoots in rule 4 | note the

e�ect of the RH180 command in alternating the orientation of the subsequent

b

0

-part). As the transition from the �rst to the second growth mode occurs in a

non-deterministic manner (rule 3 having probability 1/10), the shape of the plant

cannot be predicted. Fig. 41 shows the steps 6 and 12 of a sample development.

6.3 examp.lsy

This example shows a rather simple 3-dimensional model plant with above-ground

and below-ground parts, demonstrating several types of di�erentiation and also

de-di�erentiation of meristems, here in the form of total reiterations from roots.

1 nvar x0 uniform 0 360,

2 nvar x1 normal 0 15,

3 nvar x2 uniform -10 0,

4 nvar x3 uniform -25 25,

5 � # [ P14 t0 ] P4 &6 < [ RH(x0) P5 bl ] > L�0.6 r0,

6 t0 # dt F D RH137.5 [ RL80 L�0.5 P2 k(1) s1 ]

[ RH180 RL80 L�0.5 P2 k(1) s1 ] t0,

7 s1 # ds F D [ RH25 RU60 $ L�0.7 s2 ]

[ RH-25 RU-60 $ L�0.7 s2 ] s1,

8 s2 # ds F D,

9 dt # dt D+3,

10 ds # ds D+2,

11 (t < 6) k(t) # k(t+1),

12 (t = 6) k(t) # %,

13 r0 # RG RH(x0) RU(x1) dt F D

[ L�1.1 k(1) P15 r1 ] [ L�1.1 k(1) P15 r1' ] r0,

14 bl # rl,

15 rl # RG RL90 RL(x2) RU(x3) ds F D a1 rl,
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16 r1 # r2,

17 r1' # r2',

18 r2 # RG RL70 RL(x2) RU(x3) ds F D r2,

19 r2' # RG RH180 RL70 RL(x2) RU(x3) ds F D r2,

20 a1 # a2,

21 a2 # a3,

22 a3 # [ RG RU180 � ] ?0.2,

23 a3 # z ?0.8

Fig. 42: Finite automaton, representing

meristem state transitions
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Here, t0 stands for the terminal bud of the stem, s1 for a �rst-order-, s2 for

a second-order side axis bud, r0 for the terminal meristem of the central root,

r1 and r1

0

(resp. r2 and r2

0

) for the two (symmetrically initiated) �rst-order side

roots emerging from the central root after a 2-step delay. Furthermore, we have

(near-to-ground) lateral root meristems rl (their initial buds denoted by bl) and

adventitious buds a1 (later phases: a2, a3), initiated in the lateral roots and

sprouting with probability 0.2 (rule 22). z stands for a \dead meristem". Fig. 42

illustrates the di�erentiation process which these meristems can undergo.

t0, s1 and s2 produce the above-ground part of the plant, bl and rl the long

lateral roots, and r0, r1, r1

0

, r2, r2

0

the root system emerging from the central

root. Note that in rule 22, the start symbol � appears again, giving rise to a

whole new tree from the adventitious bud a3 (total reiteration).

Rules 11 and 12 trigger the shedding of �rst-order branches (after 6 steps).

The stem and branch thickening is done by rules 9 and 10. (Note that the

construction dt F D or ds F D, found in rules 6, 7, 8, 13, 15, 18 and 19, o�ers an

alternative way to restrict the e�ect of the D command to a local setting, when

combined with rules 9 / 10. A Dl command with appropriately incremented

parameter would have had the same e�ect.)

The above-ground side branches stand in spiral phyllotaxy (RH137:5 in rule

6), whereas the side roots of the central root are arranged in two lines (rule 13).

Some irregularity is introduced into the system by the stochastic variables x0 {

x3, in
uencing rotation angles. Fig. 43 shows the steps 3, 6, 9 and 11 of a sample

development from this grammar. The view direction is 20 degrees from above

here. Total reiteration is starting in step 9.
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Fig. 43: examp.lsy, steps 3, 6, 9 and 11

6.4 �cht5.lsy

This growth grammar is a �rst version of spruce growth modelling (Picea abies

(L.) Karst.), suited for the above-ground part of young spruce trees (3{8 years)

and giving a rather simpli�ed architectural model. (See Example 6.12 below

for a more re�ned spruce model.) It contains 18 rules and 12 variables. Each

developmental step corresponds to one year. The fundamentals on morphology

underlying this grammar were taken from [47]. However, sylleptic shoots were

not included here.
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1 nangle 45,

2 nvar x0 uniform 0 360,

3 nvar x1 uniform 0.2 0.85,

4 nvar x2 uniform 0.85 1.,

5 nvar x3 table 0 50,

6 nvar x4 normal 0 30,

7 nvar x5 normal 0 10,

8 nvar x6 normal 0 5,

9 nvar x7 normal 0 5,

10 nvar a array 5 1 30,

11 nvar k index,

12 nvar n distribution 0 0 0 0 0 0.1 0.4 0.3 0.2 0,

13 � # P10 D1 T,

14 T # i(2.2,0) RH(x0) &3 < [ @(x1) RH(k�120+x4) RL(x3+x6) A(1) L�0.4 m1 ] >

RH(x0) &n < [ @(x2) RH(k�360/n + x5) RL(x3+x6) A(1) L�0.65 s1 ] > T,

15 s1 # i(1.3,0) [ @(x2) RH15 + RU(x7) $ L�0.7 s2 ]

[ @(x2) RH-15 � RU(x7) $ L�0.7 s2 ] G(1) s1,

16 m1 # i(0.8,0) [ @(x2) RH15 + RU(x7) $ L�0.7 m2 ]

[ @(x2) RH-15 � RU(x7) $ L�0.7 m2 ] H1 m1,

17 s2 # i(1.3,0) [ @(x2) RH10 + $ L�0.7 s3 ] [ @(x2) RH-10 � $ L�0.7 s3 ] s2,

18 m2 # i(0.8,0) [ @(x2) RH10 + $ L�0.7 m3 ] [ @(x2) RH-10 � $ L�0.7 m3 ] m2,

19 s3 # i(1.3,0) L�0.7 s4,

20 m3 # i(0.8,0) L�0.7 m4,

21 i(s,t) # i(s,t+1),

22 A(t) # A(t+1),

23 G(t) # G(t+1),

24 H1 # H2,

25 H2 # RL2 H3,

26 H3 # RL2 H4,

27 H4 # RL4,

28 i(s,t) ## Dl+(s�t) F,

29 A(t) ## RL(a(t)),

30 (t >= 3) G(t) ## RL4

T stands for the apical meristem of the trunk, s1 for that of �rst-order subapi-

cal side shoots, m1 for that of �rst-order medial side shoots, and so on. Only

branching orders 0{3 are taken into account. Variable x1, ranging from 0.2 to

0.85, indicates the \medial part" of a shoot (i.e. the region where the medial side

branches emerge), x2 (from 0.85 to 1) the \subapical part" (the shoot tip having

relative position 1 for the @-command). The initial branching angle at the stem

is normally distributed around 50

�

(with variance 5

�

, line 8), but it is incremented

by rules in lines 22 and 29 according to the supplementary �le �cht5.a05 to which

line 10 refers. The angle increments listed in this one-dimensional array are



6.4. FICHT5.LSY 141

0 15 25 32 37 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40 40 40,

giving in the �nal state a branching angle of about 90 (= 50+40) degrees. In the

side branch system, however, the branching angle is 45

�

(line 1). Additionally,

the second- and third-order side branches have a slight tendency upwards (RH15

/ RH{15, resp. RH10 in lines 15{18). When getting elongated, the side branches

perform some bending, controlled by the rules in lines 23{27 and 30.

Lines 11, 12 and 14 demonstrate the use of the repetition operator & in

connection with a stochastically distributed repetition number n, specifying the

number of subapical main branches in each pseudo-whorl at the stem. (Note the

necessary use of the memory operator for n in the rotation angle speci�cation

RH(k � 360=n + x5), which enables the centrally symmetric arrangement of a

variable number of lateral axes.) The number of medial side branches at the stem

is kept �xed (to 3) for the sake of simplicity, as are the higher-order branching

factors.

It is important to note that the F command appears only in the second-

phase rule in line 28. The parameters s and t contain all information how the

symbol i(s; t) | i standing for \internode", but not in a botanical sense |

is to be interpreted. t serves as a clock (rule 21), and s stands for the annual

branch thickening (here, 2.2 mm for the trunk (line 14), 1.3 mm for �rst-order

subapical branches etc., see lines 14{20). In contrast to Example 6.3 above,

a local D-command is used here. The length information comes from length

contraction factors in lines 14{18 (L � 0:4 etc.). The initial length is 100 length

units (millimeters), the default value of GROGRA for that variable.

Fig. 44 shows the developmental steps 3 to 7 generated from this system in side

view, and in Fig. 45 the model tree of step 7 is additionally shown from above.
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Fig. 44: �cht5.lsy, steps 3 { 7
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Fig. 45: �cht5.lsy, step 7 (view from above)

6.5 shoot.lsy

This stochastic, two-phase growth grammar, which is not commented in full detail

here, is based on empirical data of the morphology of a 12-years-old subapical

�rst-order side branch of a spruce tree (Picea abies (L.) Karst.), consisting of

about 3000 shoots, which was encoded in dtd-format and analyzed by GROGRA.

�

0

The grammar generates a branch, not a whole tree. Unlike in the previous

example, the branching pattern is not �xed here. Number and strength of side

branches depend on a \vitality parameter" which is directly correlated to shoot

length. For branching order (\o" in the grammar), only the cases o = 1 and

o > 1 are distinguished, the behaviour of a shoot being primarily controlled

by its vitality (\v"). The start vitality, which is at the same time the length

of the �rst shoot which is generated in step 2, is requested as input from the

user (line 17). | The grammar has the additional peculiarity that only each

second developmental step generates a non-empty structure. (This is due to the

clustering of lateral buds controlled by the rules in line 22 and 25{27.) Hence,

step 2 corresponds to a 1-year-old shoot, step 4 to a 2-years-old shoot, etc.

0 �

Thanks are due to Dipl.-Forstw.M. Wedler for his essential part in the laborious work

of discretization of the morphometric data from this spruce branch.
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1 nconst m0 13.84,

2 nconst m1 1.14,

3 nconst m2 9.51,

4 nconst m3 1.37,

5 nconst slg 0.021,

6 nconst wki 54,

7 nconst wkf 7.7,

8 nconst ts1 14,

9 nconst tm1 8,

10 nconst t0 7,

11 nvar epsw normal 0 10,

12 nvar epsl normal 0 5,

13 nvar epsf normal 2 0.5,

14 nvar start register 0,

15 nvar sw distribution 0.5 0 0.5 0,

16 nvar i index,

17 nask I0 start vitality ? ,

18 nregister 1 5,

19 � # P2 k(start, 1, 1),

20 (o > 1) k(v, o, p) # n(0, v) ds(v, o, p) L(v+epsl) Pl14 s(0, 90, o, p)

?(1.06�0.0105�v),

21 (o == 1) k(v, o, p) # n(0, v) ds(v, o, p) L(v+epsl) Pl14 s(0, 90, o, p)

?(0.3�(1.06�0.0105�v)),

22 k(v, o, p) # n(0, v) ds(v, o, p) L(v+epsl) Pl14 s(0, 90, o, p)

&((�2.44)+0.052�v) < [ @(1/(1.08425+0.2469�i))

c(i, v, o, 1/(1.08425+0.2469�i)) ] > cs(v, o, p),

23 Pl14 # ,

24 cs(v, o, p) # k(0.4�exp(1.15�log(v)), o, p),

25 (i=0) c(i, v, o, p) # [ f(epsf�(sw�1)) RU(wki+epsw) k(0.674�v, o+1, p) ]

[ f(2�(1�sw )) RU(�wki+epsw) k(0.674�v, o+1, p) ],

26 (i>0) c(i, v, o, p) # [ f(epsf�(sw�1)) RU(wki+wkf�log(i+1)+epsw)

k((0.172+0.546�p)�v, o+1, p) ] ?0.7,

27 (i>0) c(i, v, o, p) # [ f(epsf�(sw�1)) RU(wki+wkf�log(i+1)+epsw)

k((0.172+0.546�p)�v, o+1, p) ]

[ f(epsf�(1�sw )) RU(�wki�wkf�log(i+1)+epsw)

k((0.172+0.546�p)�v, o+1, p) ] ?0.3,

28 (t <= m) s(t, m, o, p) # sz(t, o, p),

29 (t > m) s(t, m, o, p) # %,

30 (o == 1 && p > 0.85) sz(t, o, p) # s(t+1, ts1, o, p),

31 (o == 1 && p <= 0.85) sz(t, o, p) # s(t+1, tm1, o, p),

32 (o > 1) sz(t, o, p) # s(t+1, t0, o, p),
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33 n(t, v) # nz(t, v),

34 nz(t, v) # n(t+1, v),

35 (t <= 2) n(t, v) ## N(m0�v̂ m1 + m2�v̂ m3),

36 (t > 2 && t <= 7) n(t, v) ## N((m0�v̂ m1 + m2�v̂ m3)�(7�t)/5),

37 (t > 7) n(t, v) ## N0,

38 (o == 1 && p > 0.85) ds(v, o, p) ## D(0.025 � v),

39 (o == 1 && p <= 0.85) ds(v, o, p) ## D(0.025 � v),

40 (o > 1) ds(v, o, p) ## D(slg � v),

41 (o == 1 && p > 0.85 && t <= 3) s(t, m, o, p) ## Dl+(2�t) F,

42 (o == 1 && p > 0.85 && t > 3) s(t, m, o, p) ## Dl+(6) F,

43 (o == 1 && p <= 0.85 && t <= 3) s(t, m, o, p) ## Dl+(0.75�t) F,

44 (o == 1 && p <= 0.85 && t > 3) s(t, m, o, p) ## Dl+(2.25) F,

45 (o > 1 && t <= 3) s(t, m, o, p) ## Dl+(0.28�t) F,

46 (o > 1 && t > 3) s(t, m, o, p) ## Dl+(0.84) F,

We comment just a few features of this grammar �le.

Line 1{4: m0, . . . , m3 are parameters of a length - needle surface regression (see

line 35), deduced from data of [74] and [92].

Line 5: The factor slg relates vitality (length) to initial shoot diameter (line 40).

Line 6{7: wki and wkf are constants in a regression connecting branching angle

and (discrete) shoot position (i.e., cluster index i), see line 26 / 27.

Line 8{10: ts1, tm1 and t0 give maximal ages (lines 30{32), the parameter m

in line 28 / 29 controlling branch shedding. (ts1 is valid for subapical �rst-order

branches, tm1 for medial �rst-order branches, t0 for all others.)

Line 13+15: The construction \epsf � (sw� 1)" in lines 25{27 toggles stochas-

tically between values about �2 and +2, thus controlling a small, but distinct

distance between the (maximally 2) side branches in one and the same cluster.

Lines 14, 17, 19: Register 0 contains nothing but the start vitality which is asked

from the user.

Line 19: Initialization of the primary bud. k stands always for a bud, �rst para-

meter = vitality, second parameter = order, third parameter = relative position

at the mother shoot.

Line 20{21: Control of meristem death (non-deterministic).

Line 22: The central rule controlling growth from a bud and positioning of lateral

bud clusters along the new shoot. s stands for \shoot" (parameters: age, maximal

age, order, position), c for \cluster of lateral buds" (parameters: discrete position

index, vitality, order, relative position of the cluster at the mother shoot), cs for

\(trivial) cluster of (one) apical bud".

Line 24: The regression on the r.h.s. controls the shortening of successive growth

units of one axis (axis trend).

Line 25{27: A cluster is expanded to one or two lateral buds (in the subapical

case | line 25 | always 2). The regressions appearing in the �rst argument of k

control the length contraction from the mother shoot to lateral shoots, depending
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on the position at the mother shoot (acrotony).

Line 28{32: Shoot aging and shedding.

Line 33{37: Calculation of needle surface depending on shoot length and age (for

needle loss by age see [49]).

Line 38{46: Determination of initial diameter (lines 38{40) and diameter incre-

ment per year (lines 41{46).

Fig. 46: shoot.lsy, 12 steps, v = 100, 120, 140, 160

Fig. 46 shows 4 di�erent outputs of this grammar, each having the same age of 12

steps (corresponding to 6 years of shoot growth from the initial bud on), but with

di�erent start values for the vitality parameter v asked from the user: v = 100,
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120, 140 and 160. (The scaling is not the same in the four cases.)

Fig. 47: shoot.lsy, 12 steps, v = 120, four di�erent runs

The four results in Fig. 47 are obtained with the same number of steps (again

12) and the same start vitality (v = 120 in all four cases) and demonstrate the

stochastic variation between shoots of the same type.
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6.6 root.lsy

This is another example for a complex di�erentiation - dedi�erentiation - scheme,

not designed to �t a real existing species. Several types of root meristems and

their mutual transformations are modelled.

1 nvar x0 uniform 0 360,

2 nvar x1 uniform 30 70,

3 nvar x2 uniform 40 80,

4 nvar x3 table 1 1 0.9 0.6 1 1 1 0.5 0.4 1,

5 nvar x4 uniform 40 80,

6 nvar x5 uniform �20 20,

7 nvar x6 normal 0 14,

8 nvar x7 uniform �13 0,

9 nvar x8 table 1 1 1 0.8 0.8 0.6 0.6 0.5 0.4,

10 nvar x9 uniform �15 5,

11 nset D 1,

12 � # P4 RG [ L�1.3 b2' ] [ RH72 L�1.3 b2' ] [ RH144 L�1.3 b2' ]

[ RH216 L�1.3 b2' ] [ RH288 L�1.3 b2' ] dc F D c(1),

13 (t <= 9) c(t) # P7 RG L�(x3) &5 < [ b1 ] > RH(x0) RU(x6) dc F D c'(t+1),

14 (t <= 9) c'(t) # P4 RG L�(x3) &5 < [ b1 ] > RH(x0) RU(x6) dc F D c(t+1),

15 (t = 10) c'(t) # P4 RG L�(x3) &5 < [ b1 ] > RH(x0) RU(x6) dh F D c(11),

16 (t = 11) c(t) # P7 RG L�(x3) &5 < [ b1 ] > RH(x0) RU(x6) dd F D c'(12),

17 (t = 12) c'(t) # P4 RG L�(x3) &5 < [ b1 ] > RH(x0) RU(x6) F D c(13),

18 (t >= 13) c(t) # z,

19 dc # D+2.4 dc,

20 dh # D+1.5 dh,

21 dd # D+1 dd,

22 dz # D+2 dz,

23 b1 # b2 ?0.3,

24 b1 # z ?0.3,

25 b2 # b3,

26 b2' # b3',

27 b3 # L�1.5 RH(x0) RL90 RL(x7) hw ?0.8,

28 b3 # L�2 RH(x0) RL(x4) dg ?0.2,

29 b3' # L�1.5 RH(x5) RL90 RL(x7) hw ?0.95,

30 b3' # L�1.5 RH(x0) RL(x4) dg ?0.05,

31 hw # P4 dh F D L�0.9 [ RU50 e1 ] [ RU�50 e1 ] [ j1 ]

RG RL92 RL(x7) RU(x5) hw ?0.83,

32 e1 # e2 ?0.3,

33 e1 # z ?0.3,

34 e2 # e3,
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35 e3 # e4,

36 e4 # hw,

37 dg # P7 dd F D L�0.85 [ j1 ] $ RU(x5) RL(x9) dg ?0.7,

38 hw # RG [ b1 ] RL45 L�0.2 dz F D RL�45 L�4.5 L�(x8) c'(4) ?0.07,

39 j1 # j2 ?0.3,

40 j1 # z ?0.6,

41 j2 # L45 P14 RG tv,

42 tv # RH(x0) RU(x6) F L�0.9 [ a1 ] tv ?0.4,

43 tv # RH(x0) RU(x6) F L�0.8 [ a1 ] [ a1 ] tv ?0.05,

44 tv # RH(x0) RU(x6) F L�0.7 [ a1 ] [ a1 ] [ a1 ] tv ?0.2,

45 a1 # L�0.98 a2,

46 a2 # L�0.98 a3,

47 a3 # L�0.98 RH(x0) RL(x2) td,

48 tv # RG F L�0.9 [ a1 ] RH(x0) RL(x1) td ?0.1,

49 tv # RG F L�0.9 [ a1 ] [ a1 ] RH(x0) RL(x1) td ?0.05,

50 tv # RG F L�0.7 [ a1 ] [ a1 ] [ a1 ] RH(x0) RL(x1) td ?0.05,

51 tv # z ?0.15,

52 td # F L�0.98 td ?0.4,

53 td # F RG L�0.98 [ a1 ] tv ?0.4,

54 td # F RG L�0.98 [ a1 ] [ a1 ] tv ?0.1,

55 td # F RG L�0.98 [ a1 ] [ a1 ] [ a1 ] tv ?0.1,

Lines 12{18 characterize the development of the central tap root, the symbols

c and c

0

standing for its terminal meristem, which is gradually weakening and

which dies after step 12 (the z in line 18 being a \dead-end symbol" with no

further rule applicable on it). In the online graphical display, the central root

shows an alternating colour pattern (P7 / P4) which was introduced to get a

better impression of the lengths of successive tap-root segments. The decrease in

length is controlled by the table variable in line 4.

Lines 19{22 control the diameter increments of di�erent root segment types.

Lines 23{36 describe the development of horizontal lateral roots and their branch-

ing. b stands for the buds of such lateral roots (the buds in the uppermost whorl

at the central axis have a slightly modi�ed development and are therefore sym-

bolized by b

0

). hw is the meristem of a horizontal root. Line 31 describes the

rather regular lateral branching of such roots (with a branching angle of 50

�

), the

lateral meristems (e) developing into new horizontal roots after 4 steps of delay

(if they have not died, line 33). With a relatively low probability, the b-buds can

also transform to diagonal root meristems (dg, lines 28 / 30), whose development

is governed by line 37.

Line 38 describes a reiteration of the tap-root, emerging from a horizontal root

according to the branching pattern of a \bending priority sign", i.e. there is a

smaller, delayed root meristem (b1) prolonging the original axis [29]. The strength

of the reiterated tap-root is assumed to be age-dependent (table parameter x8 in

line 9).
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Fig. 48: root.lsy, steps 4, 8, 12, 16 (side view)

Lines 39{55 are devoted to sinkers which can emerge from meristems symbolized

by j appearing in di�erent positions in the lateral branching system. These

sinkers have a smaller length increment and di�erentiate into vertically (tv) and
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diagonally (td) growing roots, the symbol a standing for their lateral meristems.

Fig. 48 shows step 4, 8, 12 and 16 of an example developmental sequence generated

from root.lsy in side view, and Fig. 49 shows the structure of step 16 from above.

Fig. 49: root.lsy, step 16 (view from above)

6.7 as.lsy

This grammar does not serve as an example for morphological complexity, but

of how method calls and register variables can be used to control growth. It
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generates a simpli�ed plant, consisting of one central stem, lateral leaf-bearing

branches of �rst order, and a single non-branched root. The plant is assumed to

depend on some speci�c matter (we can imagine carbohydrate) for growth. The

creation of each new element (stem segment, branch, root segment; in the graph-

ical display: one line for each element) costs an amount of matter proportional to

its length. Respiration is not taken into account here. New matter is produced

by the branches (shown as diagonal lines) which are assumed to bear assimilating

leaves and produce an amount of matter proportional to their length. In the

beginning, the plant lives on an initial reserve of matter, which is realized as the

content of register 3 in the grammar and asked from the user when he starts the

grammar application:

1 nvar reg register 4,

2 nregister 1 0,

3 nregister 2 0,

4 nask I3 Start quantity ?,

5 nregister 4 100,

6 � # P14 m M1 [ RG P4 u ] t,

7 (reg >= 0) t # L(reg) Dl6 F I1+=(reg) RH180 [ RU65 P2 s ] t,

8 (reg >= 0) s # L(reg) F F I1+=(reg) I2+=(reg),

9 (reg >= 0) u # L(reg) F I1+=(reg) u,

10 (reg < 0) m # RU80 P15,

11 (reg < 0) P4 # P15,

12 (reg < 0) P2 # P15

The method number 1, evoked by the method call command \M1" in line 6 of this

grammar, is also an integral part of the growth speci�cation; it can be considered

as the \procedural part" in contrast to the rule part provided by the grammar

�le. It is given in the original C language speci�cation as a part of the source

code of the program module \lmethod.c" of GROGRA:

void method1(void)

f


oat maxinvest = 300;


oat maxlength = 100;


oat factor1 = 1; /� \Demand per length" �/


oat factor2 = 5; /� \Photosynthetic e�ciency" �/


oat assimres;

if (r[4] >= 0)

f /� control listing of register contents �/

printf(\nn r1: %f\, r[1]);

printf(\nn r2: %f\, r[2]);

printf(\nn r3: %f\, r[3]);
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printf(\nn r4: %f\, r[4]);

/� Calculation of the actual available reserve: �/

assimres = r[3] � factor1 � r[1] + factor2 � r[2];

if (assimres <= 0)

r[4] = �1; /� 
ag for plant death �/

else

f

if (assimres > maxinvest) /� optimal growth conditions �/

f

r[3] = assimres � maxinvest; /� new reserve �/

r[4] = maxlength; /� maximum growth �/

g

else /� restricted growth �/

f

r[3] = 0;

r[4] = maxlength � (assimres / maxinvest);

g

g

g /� endif �/

r[1] = r[2] = 0; /� new calculation by I-commands in the grammar �/

g

The array r[] is the (globally de�ned) array of register variables of GROGRA.

r[1] stands here for the total length of all plant segments created in one step

and is actualized by the command I1+ =(reg) in lines 7{9 of the grammar. (The

branches, however, are displayed with double length, as can be seen from the

commands \F F" in line 8.) r[2] is the length of the leaf-bearing branches, r[3]

the matter reserve of the plant (which is not assigned to some speci�c segment

of the plant), and r[4] the length to be used by the grammar for the growth of

new segments (lines 7{9: \L(reg)"). Note that r[4] (made accessible by line 1) is

the only register variable which is used directly in the grammar.

In the rules, t stands for the terminal meristem of the stem axis, s for the

side branch meristems, u for the root meristem. The symbol m causes plant

breakdown (in a visible sense) when the matter reserves are exhausted (along

with a colour change from yellow, green and red to white; lines 10{12).

Fig. 50 (a) shows the development of a plant with an initial matter reserve

of 1160 units (steps 2{7) where a recovery is seen after a shortening of growth in

steps 5 and 6, whereas Fig. 50 (b) shows steps 2{5 of a plant which had an initial

reserve of only 1100 units and which dies in step 5 because of a lack of assimilate.

Of course, this growth grammar does not give a realistic model of the behav-

iour of growing seedlings, but more complex variants (e.g. including respiration,

di�erent allocation strategies or transformations between di�erent kinds of stored
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carbon) could easily be realized.

Fig. 50: as.lsy. (a) Initial reserve 1160, steps 2{7,

(b) initial reserve 1100, steps 2{5.

6.8 dicho n.lsy

A very simple example of dichotomous, exponential growth, which is included

only for comparison with the sensitive grammars 6.9, 6.10 and 6.11 below.
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Fig. 51: dicho n.lsy, steps 2, 3, 4 and 9

1 � # RH180 F100 [ RU�30 b ] RU30 a,

2 a # RH180 F100 [ RU�30 b ] RU30 a,

3 b # RH180 F70 [ RU�30 b ] RU30 a

Fig. 51 shows the steps 2, 3, 4 and 9 of the development which is deterministically

determined by this simple grammar. (Note that rule 1 is super
uous when a

is taken as start symbol instead of �.) a stands for the meristem generating

the longer shoot type, b for the meristem generating the shorter shoot type.

The RH180-command changes the orientation of the two shoots in each new

generation.
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6.9 dicho d.ssy

1 nvar f2 function 2 0,

2 � # RH180 F100 [ RU�30 b ] RU30 a,

3 (f2 > 60) a # RH180 F100 [ RU�30 b ] RU30 a,

4 (f2 > 60) b # RH180 F70 [ RU�30 b ] RU30 a

This grammar | the �rst example of a sensitive L-system | was derived from

dicho n.lsy by introducing the sensitive function number 2 (here used without

argument) and making the application of the growth rules 3 and 4 dependent

from the result of that function. f2 looks in the previously generated geometrical

structure for the elementary unit which is associated to the symbol a (resp., b) to

be transformed, and calculates the distance to the nearest other unit (excluding

the mother unit | cf. Section 4.3, p. 68, and Section 4.7). The unit associated to

a (resp., b) is that which was generated by the preceding F100- or F70-command.

We can imagine that a and b represent sensible meristems at the tip of each non-

branched shoot, ready to grow to new shoots when there is enough space around

them. As the result of f2 must be greater than 60 length units, a circle with radius

60 must be free from other shoots. Otherwise, the \meristems" a and b remain

\resting", and because no branch shedding is programmed in this grammar, they

will remain inactive forever.

The resulting structure has a quite \space-�lling" tendency | but remains, of

course, restricted to two dimensions like dicho n.lsy, as all branching occurs in

one plane. Fig. 52 shows the structure after step 9.
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Fig. 52: dicho d.ssy, step 9

6.10 dicho s.ssy

Instead of the density-dependent function number 2, function number 1 is used

here, which simulates a dependence of growth from obstacles in a \light cone"

emerging from the tip of the considered elementary unit u. Because the structure

is again two-dimensional, this cone reduces to an angular sector in the plane,

opened towards the vertical (z-) direction (Fig. 53).

Function 1 returns the minimal angle which is enclosed by the line to some

elementary unit end and the central axis of the sector. (The result is 0 if some

unit crosses the central axis, i.e. lies directly above u.) In the conditions of the

rules in line 5 and 6, this result � is compared with the user-de�ned angle r

1

. If

� < r

1

, there will be no growth, like in the case of the \overcrowded meristems"

of the previous example.
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Fig. 53: Result � of function 1, applied to elementary unit u

1 nvar f1 function 1 0,

2 nvar r1 register 1,

3 nask I1 Opening angle ?,

4 � # RH180 F100 [ RU�30 b ] RU30 a,

5 (f1 > r1) a # RH180 F100 [ RU�30 b ] RU30 a,

6 (f1 > r1) b # RH180 F70 [ RU�30 b ] RU30 a

Fig. 54 shows the resulting structure after 9 steps, when an opening angle r

1

of

30 degrees was chosen.
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Fig. 54: dicho s.ssy, step 9

6.11 dichomur.ssy

The sensitivity of functions can also be used to model an in
uence of other objects

than plant shoots on the growth of a plant. The following grammar has exactly

the same rules than the preceding one | except the initial rule, which creates

a \wall", unchanged in the subsequent steps, besides the plant. This wall is

registrated by function 1 as an \overshadowing" obstacle in the same manner as

other shoots are. (The opening angle r

1

of the \light cone" is kept �xed to 30

�

here.)

1 nvar f1 function 1 0,

2 � # P7 F550 RU90 F80 RU90 F550 RU�90 f�3

RU�90 P14 RH180 F100 [ RU�30 b ] RU30 a,

3 (f1 > 30) a # RH180 F100 [ RU�30 b ] RU30 a,

4 (f1 > 30) b # RH180 F70 [ RU�30 b ] RU30 a

Fig. 55 shows steps 2, 4, 6, 8, 10 and 12 of the resulting development.
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Fig. 55: dichomur.ssy, steps 2, 4, 6, 8, 10, 12
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6.12 pic0.lsy

We leave now the sensitive grammars again and return to the modelling of spruce

crowns (Picea abies (L.) Karst.) (cf. Example 6.4, p. 139). The following gram-

mar is based on rough empirical observations of Seibt [110] on research areas in

the Solling (Germany), made at trees in the ages 85, 90 and 95 years. (The back-

extrapolation to young trees which is undertaken here is not to be understood

as empirically settled.) The regression for height growth which is used in line 46

below is a simpli�ed version of an equation of Houllier and Leban [59] and was

�tted to the values of [110], the three-sections approach for diameter increment

(lines 51{54) comes from Kobayashi [67], and the needle area calculation (lines

87{103) again from [74] and [92], as in Example 6.5. The positions and dynamics

of proventive shoot growth are oriented at results of Gruber [49]. The purpose

of this example is to illustrate how such empirical approaches and regressions can

be included in a morphological model based on GROGRA.

1 nconst bh 1300,

2 nconst be �0.0113,

3 nconst g1 0.014,

4 nconst g2 0.2,

5 nconst d1 1.5,

6 nconst dm1 0.9,

7 nconst d2 0.8,

8 nconst d3 0.7,

9 nconst k 1E�8,

10 nconst cb 0.9888,

11 nconst sw 452,

12 nconst tc3 4,

13 nconst tp 5,

14 nconst vf 0.01,

15 nconst at 0.97,

16 nconst m0 13.84,

17 nconst m1 1.14,

18 nconst m2 5.4,

19 nconst m3 1.385,

20 nvar t0 function 10 1,

21 nvar f11 function 11 5,

22 nvar g generation,

23 nvar n1 normal 1 0.05,

24 nvar n2 normal 0 4,

25 nvar n3 normal 0 30,

26 nvar n4 normal 0 10,



162 CHAPTER 6. EXAMPLES

27 nvar ba uniform 0.03 0.1,

28 nvar me uniform 0.3 0.8,

29 nvar su uniform 0.85 0.97,

30 nvar lg length,

31 nvar dh register 0,

32 nvar kb register 1,

33 nvar va register 2,

34 nvar rf table 0.1 0.2 0.4 0.6 0.7 0.8 0.85 0.9 0.95 1,

35 nvar tm table 1 1 1 2 2 2 2 2 3 3 4,

36 nvar tc2 table 2 3 3 4 4 5 5 5 6 6 6 6 6 6 6 7,

37 nvar kf table 2.5 2.5 2 2 1.5 1.5 1,

38 nvar ro uniform 0 360,

39 nvar ns distribution 0 0 0 0 0 0.2 0.5 0.2 0.1 0,

40 nvar nm distribution 0 0 0 0.1 0.2 0.2 0.2 0.2 0.1 0,

41 nvar i index,

42 nset D 4,

43 nset N 0,

44 nregister 2 1,

45 � # bas(1) tk,

46 bas(t) # J0=(sw�rf�exp(be�t)) J2=(n1) bas(t+1),

47 J0=(x) # ,

48 J2=(x) # ,

49 tk # P4 t(0,0),

50 t(t, h) # L(dh) a(0,h,6,va) RH(ro)

&(nm) < [ @(me) RH(i�360/nm +n3) L�(0.4�kf) D w(0,n2+5) $ m(0) ] >

RH(ro)

&(ns) < [ @(su) RH(i�360/ns +n4) L�(0.65�kf) D w(0,n2) $ s(0) ] >

t(t+1,h+dh�va),

51 (t < t0(g)) a(t, h, d, y) # a(t+1,h,d+g1�dh,y),

52 (t >= t0(g)) a(t, h, d, y) # b(h,d+g1�dh,y) J1=(h),

53 (h >= bh) b(h, d, y) # b(h,d+g1�dh�exp((�k)�(kb�h)),y),

54 (h < bh) b(h, d, y) # b(h,d+g1�dh�exp((�k)�(kb�h))�(1+(bh�h)�g2/bh),y),

55 J1=(x) # ,

56 w(t, y) # w(t+1,y),

57 (t <= 3) s(t) # c1(t,0,va)

g(0, vf) [ @(me) L�0.4 RH�15 RU60 $ sm2 ]

[ @(me) L�0.4 RH15 RU�60 $ sm2 ]

g(0, vf) [ @(su) L�0.7 RH�15 RU45 $ s2 ]

[ @(su) L�0.7 RH15 RU�45 $ s2 ]

L�(at) s(t+1),
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58 (t > 3) s(t) # c1(t,0,va)

h(0,0.001) [ @(ba) L�0.5 RH�60 RU80 $ p(3,0) ]

[ @(ba) L�0.5 RH60 RU�80 $ p(3,0) ]

h(0,0.008) [ @(su) L�0.6 RH�50 RU70 $ p(2,0) ]

[ @(su) L�0.6 RH50 RU�70 $ p(2,0) ]

h(0,0.02) [ @(ba) L�0.65 RH�30 RU60 $ p(1,0) ]

[ @(ba) L�0.65 RH30 RU�60 $ p(1,0) ]

g(0, vf�1.5) [ @(me) L�0.4 RH�15 RU60 $ sm2 ]

[ @(me) L�0.4 RH15 RU�60 $ sm2 ]

g(0, vf) [ @(su) L�0.7 RH�15 RU45 $ s2 ]

[ @(su) L�0.7 RH15 RU�45 $ s2 ]

L�(at) s(t+1),

59 m(t) # cm1(t,0,va)

g(0,vf�1.5) [ @(su) L�0.7 RH�15 RU45 $ ms2 ]

[ @(su) L�0.7 RH15 RU�45 $ ms2 ]

L�(at) m(t+1),

60 (j==0 && t==t0(g)�3) c1(j,t,y) # c1(j,t+1,y) % ?0.1,

61 (j==0 && t==t0(g)�2) c1(j,t,y) # c1(j,t+1,y) % ?0.4,

62 (j==0 && t==t0(g)�1) c1(j,t,y) # c1(j,t+1,y) %,

63 (j==0 && t>=t0(g)+3) c1(j,t,y) # %,

64 c1(j,t,y) # c1(j,t+1,y),

65 (j==0 && t==tm�1) cm1(j,t,y) # cm1(j,t+1,y) % ?0.3,

66 (j==0 && t==tm) cm1(j,t,y) # cm1(j,t+1,y) %,

67 (j==0 && t>=tm+6) cm1(j,t,y) # %,

68 cm1(j,t,y) # cm1(j,t+1,y),

69 g(t, s) # g(t+1,s),

70 h(t, s) # h(t+1,s),

71 s2 # RV c2(0,tc2,va)

g(0,vf) [ @(su) L�0.7 RH�5 RU45 $ s3 ]

[ @(su) L�0.7 RH5 RU�45 $ s3 ]

L�(at) s2 ?0.93,

72 s2 # RV c2(0,tc2,va)

L�(at) s2 ?0.07,

73 ms2 # RV c2(0,3,va)

g(0,vf) [ @(su) L�0.7 RH�5 RU45 $ s3 ]

[ @(su) L�0.7 RH5 RU�45 $ s3 ]

L�(at) ms2 ?0.6,

74 ms2 # RV c2(0,3,va)

L�(at) ms2 ?0.4,

75 sm2 # RV c2(0,3,va)

g(0,vf) [ @(su) L�0.7 RH�5 RU45 $ s3 ]

[ @(su) L�0.7 RH5 RU�45 $ s3 ]

L�(at) sm2 ?0.8,

76 sm2 # RV c2(0,3,va) L�(at) sm2 ?0.2,
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77 (t < 4�k+2) p(k, t) # p(k, t+1),

78 (t >= 4�k+2) p(k, t) # RV c2(0,tp,va)

L�(at) p(k,t+1) ?((1�k�0.07)�0.4),

79 (t >= 4�k+2) p(k, t) # RV c2(0,tp,va)

h(0,0.03) [ @(su) L�0.7 RH�5 RU45 $ s3 ]

[ @(su) L�0.7 RH5 RU�45 $ s3 ]

L�(at) p(k,t+1) ?((1�k�0.1)�0.6),

80 (t >= 4�k+2) p(k, t) # ?(k�0.07),

81 s3 # RV c3(0,tc3,va) L�(at) s3 ?0.9,

82 s3 # ?0.1,

83 (t <= s) c2(t, s, y) # c2(t+1,s,y),

84 (t > s) c2(t, s, y) # %,

85 (t <= s) c3(t, s, y) # c3(t+1,s,y),

86 (t > s) c3(t, s, y) # %,

87 (t <= 2) a(t, h, d, y) ## P2 D(d) N(m0�lĝ m1+m2�lĝ m3) F�(y),

88 (t > 2 && t <= 5) a(t, h, d, y) ## P2 D(d)

N((m0�lĝ m1+m2�lĝ m3)�(5�t)/3) F�(y),

89 (t > 5) a(t, h, d, y) ## P2 D(d) N0 F�(y),

90 b(h, d, y) ## D(d) N0 F�(y),

91 w(t, y) ## RU(atg(0.19�(t�3))/3+60+y),

92 (t <= 2) c1(j,t,y) ##

V(f11(j,t,2.5/(j+t+10)̂ 2,6/(j+t+10)̂ 2,0.3�0.015�sqrt(j+t)))

RV Dl+(d1�t) N(m0�lĝ m1+m2�lĝ m3) F�(y),

93 (t > 2 && t <= 7) c1(j,t,y) ##

V(f11(j,t,2.5/(j+t+10)̂ 2,6/(j+t+10)̂ 2,0.3�0.015�sqrt(j+t)))

RV Dl+(d1�t) N((m0�lĝ m1+m2�lĝ m3)�(7�t)/5) F�(y),

94 (t > 7) c1(j,t,y) ##

V(f11(j,t,2.5/(j+t+10)̂ 2,6/(j+t+10)̂ 2,0.3�0.015�sqrt(j+t)))

RV Dl+(d1�7+0.3�d1�(t�7)) N0 F�(y),

95 (t <= 2) cm1(j,t,y) ## V(f11(j,t,0.01,0.01,0.25)) RV Dl+(dm1�t)

N(m0�lĝ m1+m2�lĝ m3) F�(y),

96 (t > 2 && t <= 7) cm1(j,t,y) ## V(f11(j,t,0.01,0.01,0.25))

RV Dl+(dm1�t) N((m0�lĝ m1+m2�lĝ m3)�(7�t)/5) F�(y),

97 (t > 7) cm1(j,t,y) ## V(f11(j,t,0.01,0.01,0.25))

RV Dl+(dm1�7+0.1�dm1�(t�7)) N0 F�(y),

98 (t <= 2) c2(t, s, y) ## Dl+(d2�t) N(m0�lĝ m1+m2�lĝ m3) F�(y),

99 (t > 2 && t <= 7) c2(t, s, y) ## Dl+(d2�t)

N((m0�lĝ m1+m2�lĝ m3)�(7�t)/5) F�(y),

100 (t > 7) c2(t, s, y) ## Dl+(d2�t) N0 F�(y),

101 (t <= 2) c3(t, s, y) ## Dl+(d3�t) N(m0�lĝ m1+m2�lĝ m3) F�(y),

102 (t > 2 && t <= 7) c3(t, s, y) ## Dl+(d3�t)

N((m0�lĝ m1+m2�lĝ m3)�(7�t)/5) F�(y),

103 (t > 7) c3(t, s, y) ## Dl+(d3�t) N0 F�(y),
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104 g(t,s) ## V(s�(t�t�2�t+1)),

105 h(t,s) ## V(s�(t�1)),

As in the example shoot.lsy above, only a few features of this complex growth

grammar shall be commented here.

Register 0 (associated with variable dh, line 31) contains the height increment of

the tree in the actual step (one developmental step representing one year). This

value is actualized by the J command in line 46, using the constants sw and be

from lines 2 and 11, and also a growth reduction factor rf (damping) for the

young tree, speci�ed explicitely as a table variable in line 34.

The height of the crown basis is given as a function of age (line 20). This height is

involved in the calculation of diameter increment in lines 51{54. Stem segments

in the living crown are symbolized by a, stem segments below by b. In the living

crown, the yearly diameter increment is assumed to be linearly dependent from

height increment dh and independent from the height of the segment ([67]; line

51: d + g1 � dh). In the branchless stem part, diameter increment is exponen-

tially diminuishing with height (line 53). Below breastheight (bh), however, the

diameter growth of the trunk is again stronger, this strengthening being re
ected

in line 54 (cf. [67]).

The development of the branching angle of the main branches with age is approx-

imated by a �tting function in line 91, tending versus 90

�

when the branch grows

old. A stochastic variation n2, however, disturbs the determinism slightly. A

variation in the length increments of all new shoots is also included in the gram-

mar, representing yearly climatic in
uences (register 2, represented by variable

va; line 46).

The morphological development of the lateral branching is rather simplymodelled

in this grammar; only branching orders 1, 2 and 3 are taken into account, and,

as in the case of Example 6.4, only the rough di�erentiation into \subapical"

and \medial" shoots is made to model acrotony (symbols s, m, s2, ms2 etc.).

The rule in line 50, specifying the distribution of main branches at the stem, is

comparable to the rule in line 14 of �cht5.lsy (p. 139). The shoots of order 1, 2

and 3 are symbolized by c1, cm1, c2 and c3. Added is a growth from proventive

(delayed) buds (p) in the basal region of �rst-order shoots (lines 58 and 77{80).

Branch bending is modelled with the help of V - and RV -commands. The main

(i.e. �rst-order) branches are considered separately (lines 92{97) to ensure their

characteristic form. Another spruce phenotype, distinguished by a more or less

intensive hanging down of second-order branches ([47]), can easily be speci�ed by

a change in the second parameter (s) of the symbol g (lines 57{59 and 71{75),

which is translated in line 104 in an age-dependent V -command.

The shedding of subapical main branches occurs around the crown base position,

but is not completely deterministic (lines 60{63). Note that the shoot symbol

c1 is itself transformed into the cut operator %, thus avoiding the use of an

extra symbol for that purpose. Some dead stubs remain for 4 years. The medial
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branches die much earlier (lines 65{67).

Needle surface development is modelled by the regressions in lines 87, 88,

92{102, cf. Example 6.5. The replication of rules (92{94, 95{97, 98{100, 101{

103) is due to the inclusion of needle losses with age. Branchwood thickening is

assumed to be constant with time, but depends on branching order and position

(commands Dl+ in lines 92{103).

Because of the two rules in lines 46 and 49 which precede the development

of any visible structure, the developmental step index exceeds the age (in years)

of the modelled tree by 2. Fig. 56 shows the developmental steps 7, 12, 17, 22

and 27, thus representing the same spruce tree in the ages of 5, 10, 15, 20 and 25

years.

Fig. 56: pic0.lsy, steps 7, 12 and 17
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Fig. 56 (continued): pic0.lsy, steps 22 and 27
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Appendix 1: The colour table of GROGRA

0 black

1 blue

2 green

3 cyan

4 red

5 magenta

6 brown

7 light grey

8 dark grey

9 light blue

10 light green

11 light cyan

12 light red

13 light magenta

14 yellow

15 white



APPENDIX 2 169

Appendix 2: The turtle commands

In this table, x stands for a real and i for an integer.

Command E�ect

L `

L

= ` = `

g

L(x) `

L

= ` = x

L+(x) `

L

= ` = ` + x

L�(x) `

L

= ` = ` � x

Ll(x) `

L

= x

Ll+(x) `

L

= ` + x

Ll�(x) `

L

= ` � x

D d

L

= d = d

g

D(x) d

L

= d = x

D+(x) d

L

= d = d+ x

D�(x) d

L

= d = d � x

Dl(x) d

L

= x

Dl+(x) d

L

= d+ x

Dl�(x) d

L

= d � x

V v

L

= v = v

g

V(x) v

L

= v = x

V+(x) v

L

= v = v + x

V�(x) v

L

= v = v � x

Vl(x) v

L

= x

Vl+(x) v

L

= v + x

Vl�(x) v

L

= v � x

N n

L

= n = n

g

N(x) n

L

= n = x

N+(x) n

L

= n = n+ x

N�(x) n

L

= n = n � x

Nl(x) n

L

= x

Nl+(x) n

L

= n+ x

Nl�(x) n

L

= n � x

P p

L

= p = p

g

P(i) p

L

= p = i

Pl(i) p

L

= i



170 APPENDIX 2

Command E�ect

F P = P + `

L

�H, q = 0, g = g + 1,

m actualized, unit construction

F(x) P = P + x �H, q = 0, g = g + 1,

m actualized, unit construction

F+(x) P = P + (`

L

+ x) �H, q = 0, g = g + 1,

m actualized, unit construction

F�(x) P = P + `

L

� x �H, q = 0, g = g + 1,

m actualized, unit construction

f P = P + ` �H, q = q � 1

f(x) P = P + x �H, q = q � x=`

f+(x) P = P + (` + x) �H, q = q � (`+ x)=`

f�(x) P = P + ` � x �H, q = q � x

@(x) P = P + ` � (x� 1) �H, q = 1 � x

RH(x) L = L cos x+ U sinx, U = �L sinx+ U cos x

RL(x) H = H cos x+ U sinx, U = �H sinx+ U cos x

RU(x) H = H cos x� L sinx, L = H sinx+ L cos x

RV H = normalized(H � v

L

� (0; 0; 1)), U also changed

RV(x) H = normalized(H � x � (0; 0; 1)), U also changed

RV+(x) H = normalized(H � (v

L

+ x) � (0; 0; 1)), U also changed

RV�(x) H = normalized(H � v

L

� x � (0; 0; 1)), U also changed

RG H = (0; 0; �1), L and U also changed

+ same as RU(w

g

)

� same as RU(�w

g

)

$ corrects U and L for U pointing upwards

as steeply as possible

[ puts current state on stack; b = b+ 1

] re-installs former state from stack

% stops command execution until next ] on same level

(or till the end)

Ii =(x) r

i

= x

Ii+ =(x) r

i

= r

i

+ x

Ii� =(x) r

i

= r

i

� x

Ji =(x) r

i

= x at generation time

Ji+ =(x) r

i

= r

i

+ x at generation time

Ji� =(x) r

i

= r

i

� x at generation time

Mi execution of method i
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