User Tools

Site Tools


03_community:02_more:02_publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
03_community:02_more:02_publications [2025/01/30 11:41] – ↷ Page moved and renamed from 03_community:publications to 03_community:02_more:02_publications tim203_community:02_more:02_publications [2025/12/10 14:48] (current) gaetan
Line 1: Line 1:
 ====== Publications related to GroIMP ====== ====== Publications related to GroIMP ======
- 
  
 An incomplete list of publications around the GroIMP project, on both modeling in and implementations on the platform. An incomplete list of publications around the GroIMP project, on both modeling in and implementations on the platform.
-===== Articles =====+ 
 +====== Articles =====
 + 
 +==== 2025 ==== 
 + 
 +**Heidsieck et al., (2025).** Pointcloud: Implementation of point clouds as graphs in the 3D plant modeling platform GroIMP. Journal of Open Source Software, 10(110), 8062, https://doi.org/10.21105/joss.08062 
 + 
 + 
 +**Oberländer et al., (2025).** GroLink: A general application programming interface for the plant-modeling platform GroIMP. Journal of Open Source Software, 10(115), 8343, https://doi.org/10.21105/joss.08343 
 +==== 2024 ==== 
 + 
 +**Li WJ, Zhang K, Liu JX, Wu JA, Zhang Y, and Henke M (2024).** Optimizing Daylily Cultivation: Integrating Physiological Modeling and Planting Patterns for Enhanced Yield and Resource Efficiency. Frontiers in Plant Science, 15, https://doi.org/10.3389/fpls.2024.1442485 
 + 
 +**Patil SM, Henke M, Chandramouli M and Jagarlapudi A (2024).** Die Rolle virtueller Pflanzen in der digitalen Landwirtschaft, Book chapter in: Chaudhary  S, Biradar CM, Divakaran S, Raval MS (eds) "Digitales Ökosystem für Innovationen in der Landwirtschaft", book series “Studen in Big Data 121”, Springer Nature Singapore Pte Ltd., https://doi.org/10.1007/978-981-97-2498-7_8 
 + 
 +**Zhao D, Xu TY, Henke M, Yang H, Zhang CJ, Cheng JP, Yang GJ (2024).** A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation, Computers and Electronics in Agriculture, 224, https://doi.org/10.1016/j.compag.2024.109138 
 + 
 +**Xu LF, He KR, Henke M, Ding WL, Buck-Sorlin GH (2024).** Mixed particle swarm optimization algorithm-based approach to optimize spatial distribution of virtual maize, Computers and Electronics in Agriculture, accepted, https://doi.org/10.1016/j.compag.2024.109159 
 + 
 +**Xu DM, Henke M, Li YM, Zhang Y, Liu AH, Liu XG and Li TL (2024).** Optimal Design of light Mlicroclimate and Planting Strategy for Chinese Solar Greenhouses Using 3D Light Environment Simulations, Energy, 302, 131805, https://doi.org/10.1016/j.energy.2024.131805 
 + 
 +**Li YM, Henke M, Zhang DL, Wang CQ, Wei M (2024).** Optimized Tomato Production in Chinese Solar Greenhouses: The Impact of an East–West Orientation and Wide Row Spacing; Agronomy, 14(2), 314, https://doi.org/10.3390/agronomy14020314 
 + 
 +**Zhang Y, Henke M, Li YM, Xu DM, Liu AH, Liu XG and Li TL (2024).** Estimating the Light Interception and Photosynthesis of Greenhouse-Cultivated Tomato Crops under Different Canopy Configurations. Agronomy, 14(2), 249, https://doi.org/10.3390/agronomy14020249 
 + 
 +==== 2023 ==== 
 + 
 +**Zhang Y, Li WJ, Han ZP, Zhang K, Liu JW, and Henke M (2023).** A Study on the Three-Dimensional Dynamic Growth Simulation of Daylily Plants Based on Source-Sink Relationships Modeling. Smart Agriculture, 6(2), 140-153, https://doi.org/10.12133/j.smartag.SA202310011; in Chinese with English abstract 
 + 
 +**Patil SM, Henke M, Chandramouli M and Jagarlapudi A; Role of Virtual Plants in Digital Agriculture (2023).** Book chapter in: Chaudhary  S, Biradar CM, Divakaran S, Raval MS (eds) "Digital Ecosystem for Innovation in Agriculture (DEIA2023)", book series “Studies in Big Data 121”, Springer Nature Singapore Pte Ltd., https://doi.org/10.1007/978-981-99-0577-5_8
  
 ==== 2022 ==== ==== 2022 ====
  
 **Chi F., Streit K., Tavkhelidze A., and W. Kurth (2022).** Reconstruction of phyllotaxis at the example of digitized red mangrove (Rhizophora mangle) and application to light interception simulation. in silico Plants 4 (1): diac002.  https://academic.oup.com/insilicoplants/article/4/1/diac002/6535671 **Chi F., Streit K., Tavkhelidze A., and W. Kurth (2022).** Reconstruction of phyllotaxis at the example of digitized red mangrove (Rhizophora mangle) and application to light interception simulation. in silico Plants 4 (1): diac002.  https://academic.oup.com/insilicoplants/article/4/1/diac002/6535671
 +
 +**Liu AH, Henke M, Li YM, Zhang Y, Xu DM, Liu XG and Li TL (2022).** Investigation of the impact of supplemental reflective films to improve micro-light climate within tomato plant canopy in solar greenhouses. Frontiers in Plant Science, 13:966596, 1-16, https://doi.org/10.3389/fpls.2022.966596
 +
 +**Zhang Y, Henke M, Li YM, Xu DM, Liu AH, Liu XA and Li TL (2022).** Towards the maximization of energy performance of Chinese energy-solar greenhouses: a systematic analysis of common greenhouse shapes. Solar Energy, 236, 320-334, https://doi.org/10.1016/j.solener.2022.03.013
 +
 +**Liu AH, Xu DM, Henke M, Zhang Y, Li YM, Liu XA and Li Tl (2022).** Determination of the Optimal Orientation of Chinese Solar Greenhouses Using 3D Light Environment Simulations. Remote Sensing, 14(4), 912, https://doi.org/10.3390/rs14040912
 +
 +**Zhang Y, Henke M, Li YM, Xu DM, Liu XA, Liu XA and Li TL (2022).** Analysing the impact of greenhouse planting strategy and plant architecture on tomato plant physiology and estimated dry matter. Frontiers in Plant Science, 13:828252, 1-19, https://doi.org/10.3389/fpls.2022.828252
 +
 +==== 2021 ====
 +
 +**Zhu J, Gou F, Begum F, Rossouw G, Henke M, Johnson E, Holzapfel B, Field S and Seleznyova A (2021).** Simulating organ biomass variability and carbohydrate distribution in perennial fruit crops: a comparison between the common assimilate pool and phloem carbohydrate transport models. in silico Plants, 3(2), 1-20, https://doi.org/10.1093/insilicoplants/diab024
 +
 +**Zhang, Y., Henke, M., Buck-Sorlin, G. H., Li, Y., Xu, H., Liu, X., & Li, T. (2021).** Estimating canopy leaf physiology of tomato plants grown in a solar greenhouse: Evidence from simulations of light and thermal microclimate using a Functional-Structural Plant Model. Agricultural and Forest Meteorology, 307, 108494.  https://www.sciencedirect.com/science/article/abs/pii/S0168192321001775?via%3Dihub
  
 ==== 2020 ==== ==== 2020 ====
 +
 +**Zhang Y, Henke M, Li Y, Yue X, Xu D, Liu X and Li T (2020).** High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure. Renewable Energy}, 160, 730-745, https://doi.org/10.1016/j.renene.2020.06.144
  
 **Kurth W. (2020).** Multiscale graph grammars can generate Cayley graphs of groups and monoids. In: F. Gadducci, T. Kehrer (eds.): Graph Transformation. 13th International Conference, ICGT 2020, June 25-26, Lecture Notes in Computer Science 12150, Springer Nature Switzerland, pp. 307-315.  https://link.springer.com/chapter/10.1007/978-3-030-51372-6_18 **Kurth W. (2020).** Multiscale graph grammars can generate Cayley graphs of groups and monoids. In: F. Gadducci, T. Kehrer (eds.): Graph Transformation. 13th International Conference, ICGT 2020, June 25-26, Lecture Notes in Computer Science 12150, Springer Nature Switzerland, pp. 307-315.  https://link.springer.com/chapter/10.1007/978-3-030-51372-6_18
Line 26: Line 70:
  
 ==== 2017 ==== ==== 2017 ====
 +
 +**Zhu JQ, Dai ZW, Vivin P, Gambetta GA, Henke M, Peccoux A, Ollat N and Delrot S (2017).** A 3D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchanges. Annals of Botany, 121(5), 833-848, https://doi.org/10.1093/aob/mcx141
 +
 +**Tian T, Wu LT, Henke M, Ali B, Zhou WJ and Buck-Sorlin GH (2017).** Modeling allometric relationships in leaves of young rapeseed (//Brassica napus// L.) grown at different temperature treatments. Frontiers in Plant Science, 8(313), 1-12, https://doi.org/10.3389/fpls.2017.00313
  
 **Henke M., Kniemeyer O., and W. Kurth (2017).** Realization and extension of the Xfrog approach for plant modelling in the graph-grammar based language XL. Computing and Informatics 36 (1): 33-54. **Henke M., Kniemeyer O., and W. Kurth (2017).** Realization and extension of the Xfrog approach for plant modelling in the graph-grammar based language XL. Computing and Informatics 36 (1): 33-54.
Line 37: Line 85:
  
 **Chi F., Kurth W., and K. Streit (2016).** Generating 3D models from a single 2D digitized photo using GIS and GroIMP. In: Proceedings 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA 2016), 7-11 Nov. 2016, Qingdao (China), IEEE Press, Beijing 2016, 22-27. **Chi F., Kurth W., and K. Streit (2016).** Generating 3D models from a single 2D digitized photo using GIS and GroIMP. In: Proceedings 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA 2016), 7-11 Nov. 2016, Qingdao (China), IEEE Press, Beijing 2016, 22-27.
 +
 +**Mao LL, Zhang LZ, Evers JB, Henke M, van der Werf W, Liu SD, Zhang SP, Zhao XH, Wang BM and Li ZH (2016).** Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional–structural plant model. Field Crops Research, 187, 1-11, https://doi.org/10.1016/j.fcr.2015.12.005
  
 **Evers J.B., and L. Bastiaans (2016).** Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. Journal of Plant Research 129: 339–351. **Evers J.B., and L. Bastiaans (2016).** Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. Journal of Plant Research 129: 339–351.
Line 201: Line 251:
  
 **Long Q. (2019).** The Integration of Different Functional and Structural Plant Models. Ph.D. thesis, University of Göttingen, Germany. **Long Q. (2019).** The Integration of Different Functional and Structural Plant Models. Ph.D. thesis, University of Göttingen, Germany.
 +
 +==== 2017 ====
 +
 +**Henke M (2017).** Methodical and technical aspects of functional-structural plant modelling, Ph.D. thesis, University of Göttingen, Germany, eDiss - SUB Göttingen, https://dx.doi.org/10.53846/goediss-6490
  
 ==== 2015 ==== ==== 2015 ====
03_community/02_more/02_publications.1738233709.txt.gz · Last modified: 2025/01/30 11:41 by tim2